
D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

1

SmartEdge
Semantic Low-code Programming

Tools for Edge Intelligence
This project is supported by the European Union’s Horizon RIA research

and innovation programme under grant agreement No. 101092908

Deliverable D3.1

Design of tools for continuous

semantic integration

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

2

Editor Darko Anicic (SAG)

Contributors Aparna Saisree Thuluva (SAG), Kirill Dorofeev (SAG), Alessio

Carenini (CEF), Marco Grassi (CEF), Mario Scrocca (CEF), Jean-Paul

Calbimonte (HES-SO), Davide Calvaresi (HES-SO), Banani Anuraj

(HES-SO), Mehrdad Bagheri (CONV), Iisakki Kosonen (Aalto), Danh

Le-Phuoc (TUB), Anh Le-Tuan (TUB), Duc-Manh Nguyen (TUB),

André Paul (Fhg)

Version 1.0

Date 15 December 2023

Distribution PUBLIC

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

3

DISCLAIMER

This document contains information which is proprietary to the SmartEdge (Semantic Low-code

Programming Tools for Edge Intelligence) consortium members that is subject to the rights and

obligations and to the terms and conditions applicable to the Grant Agreement number

101092908. The action of the SmartEdge consortium members is funded by the European

Commission.

Neither this document nor the information contained herein shall be used, copied, duplicated,

reproduced, modified, or communicated by any means to any third party, in whole or in parts,

except with prior written consent of the SmartEdge consortium members. In such case, an

acknowledgement of the authors of the document and all applicable portions of the copyright

notice must be clearly referenced. In the event of infringement, the consortium members

reserve the right to take any legal action it deems appropriate.

This document reflects only the authors’ view and does not necessarily reflect the view of the

European Commission. Neither the SmartEdge consortium members as a whole, nor a certain

SmartEdge consortium member warrant that the information contained in this document is

suitable for use, nor that the use of the information is accurate or free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is provided as is and no guarantee or warranty is given that

the information is fit for any particular purpose. The user thereof uses the information at its sole

risk and liability.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

4

REVISION HISTORY

LIST OF AUTHORS

ABBREVIATIONS

Revision Date Responsible Comment

0.1 15.04.2023 SAG ToC

0.2 01.05.2023 SAG

Standardized Semantic

Interfaces - first draft

(T3.1)

0.3 15.05.2023 CEFRIEL DataOps - first draft (T3.2)

0.4 01.06.2023 HES-SO Swarm orchestration -

first draft (T3.3)

0.5 15.06.2023 SAG SmartEdge Schema

0.6 01.07.2023 SAG Recipe Model

0.7 15.07.2023 SAG First draft

0.8 01.10.2023 SAG, CEFRIEL, HES-SO Updating captions, titles,

and references

0.9 30.11.2023 SAG, CEFRIEL, HES-SO, W3C Post internal review and

quality check

1.0 12.12.2023 SAG, CEFRIEL, HES-SO Final submission

Partner Name Surname Contributions

SAG Aparna Thuluva

SAG Darko Anicic

SAG Kirill Dorofeev

SAG Haoyu Ren

CEF Alessio Carenini Section 4

CEF Marco Grassi Section 4

CEF Mario Scrocca Section 4

CONV Mehrdad Bagheri Sections 4.2.2.2, 4.3.5, 4.4.5, UC2 5.5

HES-SO Jean-Paul Calbimonte Sections 3.2.2, 5

HES-SO Davide Calvaresi Sections 3.2.2, 5

HES-SO Banani Anuraj Section 5

TUB Danh Le-Phuoc Section 3.3.2

TUB Anh Le-Tuan

TUB Duc-Manh Nguyen Section 3.3.2

Fhg André Paul Section 3.2.2

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

5

Acronym Description

ADAS Advanced Driving Assistance System

AGV Automated Guided Vehicle (a.k.a. AMR)

AI Artificial Intelligence

AMR Autonomous Mobile Robots (a.k.a. AGV)

API Application Programming Interface

ARM Advanced RISC Machine

AuR Autonomous Robotics

BLE Bluetooth

BPMN Business Process Modelling Notation

COCO Common Objects in Context

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

CQLES Continuous Query Evaluation over Linked Streams

CQLES-QL CQLES-Query Language

CSI Continuous Semantic Integration

D-RDMA Declarative RDMA

DB Database

DDS Data Distribution Service

DMA Direct Memory Access

DPU Data Processing Unit

FDA Food and Drug Administration

FPGA Field Programmable Gate Arrays

FPS Frames Per Second

GDPR General Data Protection Regulation

GPU Graphical Processing Unit

GVA Group Virtual Assistant

HCF High-level Communication Framework

HW Hardware

I2I Infrastructure to Infrastructure

ID Identity

IDE Integrated Development Environment

IDM Identity Management

IoT Internet of Things

IT Information Technology

JSON JavaScript Object Notation

JSON-LD JSON-Linked Data

KB Knowledge Base

JVM Java Virtual Machine

KG Knowledge Graph

KPI Key Performance Indicator

LCF Low-level Communication Framework

LiDAR Light Detection and Ranging

LPWAN Low-power WAN

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

6

LTCF Long-Term Care Facilities

ML Machine Learning

MQTT Message Queuing Telemetry Transport

MX Mendix

NATS Network Address Translation

NIC Network Interface Card

NIST National Institute of Standards and Technology

NPU Neural Processing Unit

OMG Object Management Group

OBU On-board Unit (V2X wireless communication hardware inside a

connected vehicle)

OPC Open Platform Communications

OPC-UA OPC Unified Architecture

OS Operating System

OT Operations Technology

P4 Programming Protocol-independent Packet Processors

PACK-ML Packaging ML

PLC Programmable Logic Controller

PM Particulate Matter

PVA Personal Virtual Assistants

R2RML RDB to RDF Mapping Language

RDF Resource Description Language

RDF-Star RDF-Star

RFAC Robotic Flexible Assembly Cells

RMDA Remote Direct Memory Access

RML RDF Mapping Language

ROS Robot Operating System

V2X RSU V2X Roadside Unit (V2X wireless communication hardware, installed

near or inside the traffic sensor node/controller node)

RTSP Real Time Streaming Protocol (video)

RU Rack Unit

RUST Refactoring Using Source Transformation

RVIZ ROS Visualization

SAREF Smart Applications Reference

SCADA Supervisory Control And Data Acquisition

SDK Software Development Toolkit

SHACL Shapes Constraint Language

SLAM Simultaneous Localization and Mapping

SotA State of the Art

SotP State of the Practice

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

SUMO Simulation of Urban Mobility (Microscopic traffic simulation software)

SW Software

TBD To Be Defined

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

7

TCP Transmission Control Protocol

TM Technology Module

TRL Technical Readiness Level

TTN The Thing Network

UC Use case

UDP User Datagram Protocol

URDF Unified Robot Description Format

V2I Vehicle to Infrastructure

V2V Vehicle to Vehicle

V2X Vehicle to Anything

WAN Wide Area Network

WiFi Wireless Fidelity

WoT Web of Things

WoT TD WoT Thing Description

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

8

Executive Summary

Deliverable 3.1 is the first iteration of the design of tools for Continuous Semantic Integration

(CSI) in the SmartEdge project. The document will be updated in month 23 in deliverable D3.2

based on the final revision of the design and the first implementation of the tools for CSI.

Continuous Semantic Integration is a prerequisite for edge intelligence. In the SmartEdge

project, the edge intelligence will be realized via low-code applications that are based on sematic

recipes. This deliverable defines a semantic model for recipes. Low-code applications process

data from connected devices, e.g., robots, industrial devices, vehicles, simulated assets etc.

Recipes organize devices in so-called swarms. These devices have different capabilities,

communicate via different protocols, exchange information in different formats, and may

change over time. For all these reasons, CSI in the SmartEdge project provides standardized

semantic interfaces, i.e., a unified access to device data. The interface also provides semantic

meta-data about connected devices and relays on established standards. The challenge of

continuous semantic integration of different information models and data formats in SmartEdge

is tackled with the DataOps toolbox. Once the capabilities and data of connected devices are

unified, devices can be orchestrated in swarms. Swarms may accomplish certain goals.

SmartEdge provides a low-code approach to orchestrate connected devices with the goal of

providing swarm intelligent apps.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

9

TABLE OF CONTENTS

Table of Contents ... 9

List of Figures.. 11

List of Tables ... 13

1 Introduction.. 14

1.1 Concept of Continuous Semantic Integration .. 14

1.2 Structure of the Document .. 15

2 Functional Requirements ... 16

3 Standardized Semantic Interfaces for SmartEdge .. 20

3.1 SmartEdge Schema ... 20

3.2 Recipe Model.. 23

3.2.1 Definitions .. 23

3.2.2 Requirement Analysis ... 27

3.2.3 Recipe Model for Use Case 4 .. 37

3.3 Domain Specific Ontologies .. 43

3.3.1 The IEEE Standard for Autonomous Robotics... 43

3.3.2 OPC UA Information Model for Robots .. 44

3.3.3 OPC 30050: PackML - Packaging Control.. 45

3.3.4 OPC 40100-1: Machine Vision - Control, Configuration Management, Recipe

Management, Result Management .. 46

3.3.5 Domain Models for Smart Traffic ... 47

3.4 Standardized Semantic Interfaces .. 48

3.4.1 OPC UA ... 48

3.4.2 W3C WoT ... 49

3.4.3 DDS ... 49

3.4.4 Zenoh.. 50

3.4.5 C-V2X .. 51

3.4.6 MQTT with SparkPLug B ... 52

3.5 Standardized Semantic Interfaces in SmartEdge .. 53

4 DataOps tool for semantic management of things and embedded AI apps......................... 57

4.1 Requirements for the DataOps Toolbox ... 57

4.1.1 Data Interoperability .. 57

4.1.2 Performance and Scalability ... 59

4.1.3 Deployment .. 60

4.1.4 Low-code .. 60

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

10

4.2 State of the art ... 61

4.2.1 Semantic Interoperability through Declarative Mappings.................................... 61

4.2.2 Technical interoperability through Data Integration Tools 66

4.3 Design of the DataOps Toolbox .. 67

4.3.1 Components of the DataOps Toolbox .. 67

4.3.2 Technologies for the DataOps Toolbox .. 71

4.4 DataOps Toolbox in SmartEdge .. 78

4.4.1 Mediated Data Exchanges in SmartEdge .. 78

4.4.2 Deployment of DataOps pipelines in SmartEdge.. 81

5 Creation and orchestration of Swarm Intelligence apps .. 83

5.1 State of the art – Orchestration of Swarm Edge Apps.. 83

5.1.1 Cloud/Edge Deployment .. 83

5.1.2 Semantic IoT Platforms and WoT APIs ... 84

5.1.3 Semantic Descriptions of Devices for Orchestration .. 85

5.2 Design of the Swarm Orchestration ... 85

5.2.1 Design-time Orchestration Tooling .. 85

5.2.2 Low-code Runtime Execution Tooling .. 87

5.2.3 Swarm Apps Application Logic Design .. 87

5.2.4 Semantic Representation of Swarm App Recipes ... 89

5.2.5 Instantiation and orchestration of Swarm Apps ... 92

6 Conclusions... 97

7 References .. 98

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

11

LIST OF FIGURES

Figure 1.1: Continuous Semantic Integration for SmartEdge .. 15

Figure 3.1: Overview of semantic models in SmartEdge ... 20

Figure 3.2: Role of a swarm coordinator and orchestrator in swarm execution 22

Figure 3.3: Overview of SmartEdge Schema .. 23

Figure 3.4: Recipe Model ... 25

Figure 3.5: Sample Recipe for UC 3 .. 26

Figure 3.6: Recipe task definition: Move product to mobile rack ... 27

Figure 3.7: FX Model Entities ... 38

Figure 3.8: A conceptual overview of an OPC UA FX automation component. 38

Figure 3.9: An overview of the AutomationComponent information model. 39

Figure 3.10: Key aspects of the Functional Entity model. ... 39

Figure 3.11: Overview of the FunctionalEntity information model. .. 41

Figure 3.12: CapabilityType Definition using OPC UA FX ... 42

Figure 3.13: Overview of OPC UA Information models layer cake for OPC UA Capabilities 42

Figure 3.14: Sample Recipe for UC4... 43

Figure 3.15 IEEE Standard for Autonomous Robotics (AuR) Ontologies Classification 43

Figure 3.16: Standardized Semantic Interfaces in SmartEdge ... 54

Figure 4.1: Types of data exchanges within a swarm .. 58

Figure 4.2: Comparison of the any-to-any and any-to-one approaches for interoperability...... 61

Figure 4.3: Example of an RML mapping from CSV to RDF .. 63

Figure 4.4: Example of a YARRRML file (left) and corresponding RML mapping (right).............. 64

Figure 4.5: An RML mapping (left) and the same mapping expressed in the VTL template

language (right) .. 65

Figure 4.6: Input XML file and output RDF (Turtle) file for the mappings in Figure 4.5. Note that

both mappings produce the same output. .. 66

Figure 4.7: Semantic conversion process... 68

Figure 4.8: High-level representation of a DataOps pipeline .. 68

Figure 4.9: Node data connectors overview .. 69

Figure 4.10: Overview of a mapping processor ... 70

Figure 4.11: A Java DSL Camel route example that transfers files from the 'inputdir' to the

'outputdir' using the file component's URI arguments. .. 72

Figure 4.12: The Chimera framework provides a set of Apache Camel components that can be

combined in integrated pipelines .. 73

Figure 4.13: Overview of the functionalities implemented by Chimera 73

Figure 4.14: Deployment options for an Apache Camel route. ... 76

Figure 4.15: An example of a route in YAML (left) and the same route created visually with

Apache Karavan (right)... 78

Figure 4.16: DataOps toolbox in SmartEdge .. 79

Figure 4.17: Example JSON string from Use Case 2 ... 81

Figure 5.1: Mendix Studio environment for designing the App UI. ... 86

Figure 5.2: Mendix Studio environment design mode. ... 87

Figure 5.3: Microflow hierarchy in the Mendix model. ... 88

Figure 5.4: Example of a Mendix flow including different steps. .. 89

Figure 5.5: Discovery of semantic recipes for the requirements of a Swarm App in SmartEdge.

 .. 89

Figure 5.6: Creation of a Recipe using a Low-code environment in SmartEdge. 90

https://cnitit.sharepoint.com/sites/smart-edge/Documenti%20condivisi/General/WP3/D3.1%20Design%20of%20tools%20for%20CSI/SmartEdge%20-%20D3.1%20-%20Design%20of%20tools%20for%20continuous%20semantic%20integration.docx#_Toc153529669
https://cnitit.sharepoint.com/sites/smart-edge/Documenti%20condivisi/General/WP3/D3.1%20Design%20of%20tools%20for%20CSI/SmartEdge%20-%20D3.1%20-%20Design%20of%20tools%20for%20continuous%20semantic%20integration.docx#_Toc153529671
https://cnitit.sharepoint.com/sites/smart-edge/Documenti%20condivisi/General/WP3/D3.1%20Design%20of%20tools%20for%20CSI/SmartEdge%20-%20D3.1%20-%20Design%20of%20tools%20for%20continuous%20semantic%20integration.docx#_Toc153529671
https://cnitit.sharepoint.com/sites/smart-edge/Documenti%20condivisi/General/WP3/D3.1%20Design%20of%20tools%20for%20CSI/SmartEdge%20-%20D3.1%20-%20Design%20of%20tools%20for%20continuous%20semantic%20integration.docx#_Toc153529672
https://cnitit.sharepoint.com/sites/smart-edge/Documenti%20condivisi/General/WP3/D3.1%20Design%20of%20tools%20for%20CSI/SmartEdge%20-%20D3.1%20-%20Design%20of%20tools%20for%20continuous%20semantic%20integration.docx#_Toc153529672
https://cnitit.sharepoint.com/sites/smart-edge/Documenti%20condivisi/General/WP3/D3.1%20Design%20of%20tools%20for%20CSI/SmartEdge%20-%20D3.1%20-%20Design%20of%20tools%20for%20continuous%20semantic%20integration.docx#_Toc153529680
https://cnitit.sharepoint.com/sites/smart-edge/Documenti%20condivisi/General/WP3/D3.1%20Design%20of%20tools%20for%20CSI/SmartEdge%20-%20D3.1%20-%20Design%20of%20tools%20for%20continuous%20semantic%20integration.docx#_Toc153529683

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

12

Figure 5.7: Domain model specification in Mendix. .. 91

Figure 5.8: Reuse of the SmartEdge ontologies and other external vocabularies at design time.

 .. 92

Figure 5.9: Matchmaking between the capabilities required in the recipe and the nodes available

in the Swarm at design time. ... 92

Figure 5.10: Adding a Bluetooth connector in Mendix. ... 93

Figure 5.11: Example of a flow development in Mendix. .. 94

Figure 5.12: Instantiation of a SmartEdge recipe .. 95

Figure 5.13: Orchestration of the swarm using the instantiation of the recipe received by the

orchestrator from the design-time tool. .. 95

Figure 5.14: Mendix end-user App interface, connecting to data from the edge device. 96

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

13

LIST OF TABLES

Table 2.1: Requirements for Hardware and Protocols (Section 3.6.5 in D2.1)........................... 16

Table 2.2: Requirements for Low Code Programming (Section 3.6.6 in D2.1) 16

Table 2.3: Requirements for Continuous Semantic Integration (Section 3.6.7 in D2.1) 17

Table 2.4: WP3 Key Performance Indicator ... 19

Table 3.1: Use Case 1: Applications and Their Required Capabilities .. 28

Table 3.2: Use Case 1: Mapping Capabilities to Things (SmartEdge Nodes) 28

Table 3.3: Use Case 2: Applications and Their Required Capabilities .. 29

Table 3.4: Use Case 2: Mapping Capabilities to Things (SmartEdge Nodes) 30

Table 3.5: Use Case 3: Capabilities and Skills ... 31

Table 3.6: Use Case 4: Applications and Required Capabilities ... 33

Table 3.7: Use Case 4: Capabilities and Corresponding Skills .. 33

Table 3.8: Use Case 4: Device / Asset with Required Skills and Characteristics 33

Table 3.9: Use Case 5: Applications and Required Capabilities. .. 34

Table 3.10: Use Case 5: Capabilities and Corresponding Skills .. 35

Table 3.11: Use Case 5: Skills and Assets That Implement Them .. 36

Table 3.12: Technologies applied in SmartEdge Various Use Cases .. 55

Table 4.1: Analysis of PROs and CONs for different deployment options 77

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

14

1 INTRODUCTION

Deliverable 3.1 provides the first iteration of the design of tools for Continuous Semantic

Integration (CSI) in the SmartEdge project. In this deliverable we report the status of the work

in Work Package 3 (WP3), which aims to provide CSI via three tasks: (i) the edge semantics with

standardized semantic interfaces for IoT devices; (ii) a DataOps toolbox for continuous semantic

integration, and (iii) a declarative and low-code approach for creation and orchestration of

swarm apps based on recipes. To this goal, we design concepts for these three tasks. The

concepts are based on requirements from SmartEdge use cases and the work from D2.1. The

design will be revisited in deliverable D3.2 and requirements from D2.2. D3.2 will also provide

the first implementation of tools for Continuous Semantic Integration.

1.1 CONCEPT OF CONTINUOUS SEMANTIC INTEGRATION
The concept of Continuous Semantic Integration is not established. Thus, we explain what CSI is

and why it is needed.

In general, the Internet of Things (IoT) together with edge intelligence brings several benefits

across various industries and everyday life. These technologies enable the seamless flow of data

between devices and systems, leading to improved efficiency and productivity. They can lead to

cost savings by optimizing operations. IoT devices generate a vast amount of data. This data can

be analysed to gain valuable insights and lead to better decision-making systems. But all these

promises come with a hypothesis that the data generated with IoT devices can be easily

consumed by intelligent applications. This is not always true, and very often it is a challenge. The

reason is that IoT devices have different capabilities, communicate via different protocols,

exchange information in different formats, and may change over time. For all these reasons, it

is not an easy task to integrate data generated by IoT devices and make them consumable for

application developers. Figure 1.1 introduces the concept of Continuous Semantic Integration

as a building block between IoT devices and added-value apps. CSI in the SmartEdge project

provides Standardized Semantic Interfaces and runs on the edge. Its purpose is to provide a

unified access to IoT device data. The interface also provides semantic meta-data about

connected devices and relays on established standards. For example, capabilities of devices and

their data are described in a machine-interpretable way with standardized vocabularies. With

this, the SmartEdge project aims to enable applications that consume IoT device data in a

uniform manner.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

15

Figure 1.1: Continuous Semantic Integration for SmartEdge

1.2 STRUCTURE OF THE DOCUMENT
The document has the following sections. Section 2 refers to functional requirements, which are

defined in deliverable D2.1 and are relevant for this work; Section 3 provides the concept for

Standardized Semantic Interfaces in SmartEdge. This work is primarily the subject of Task 3.1;

Section 4 outlines the initial design of the DataOps toolbox in SmartEdge, which is in the scope

of Task 3.2; Section 5 reports the current contribution in Task 3.3 on a low-code approach for

orchestration of swarm edge applications; and finally, Section 0 closes the document

highlighting some of the conclusions found and sketching the next steps in WP3.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

16

2 FUNCTIONAL REQUIREMENTS

This section refers to functional requirements, which are defined in deliverable D2.1 and are in

scope of WP3, see Table 2.1, Table , and Table . These requirements will be updated in

deliverable D2.2. Thus, we will update them accordingly in the next version of this deliverable,

i.e., D3.2.

Table 2.1: Requirements for Hardware and Protocols (Section 3.6.5 in D2.1)

ID Task Related Use Case(s) Priority

HP-001 SmartEdge must integrate dumb devices using protocols such as OPC-UA and
DDS.

T3.1, T3.2 UC-4 High

HP-005 Capability to read Controller status messages (JSON stream).

T3.1, T3.2 UC-2, UC-3 High

HP-006 Capability to read ETSI G5 protocols for relevant parts (V2X).

T3.1, T3.2 UC-2 High

HP-007 Capability to read C-ITS protocols for relevant parts (V2X).

T3.1, T3.2 UC-2 High

HP-008 Ability to handle public transit open data (tram locations) from outside.

T3.1, T3.2 UC-2 Medium

HP-009 Support for Helsinki’s open data API for providing data to Helsinki from the
swarm sensors.

T3.1, T3.2 UC-2 Medium

HP-011 Capability for sending/receiving control messages (e.g., green requests) between
operational controllers and vehicles using appropriate format and protocol.

T3.1, T3.2 UC-2 High

HP-014 SmartEdge must support integration of heterogeneous devices with digital
interfaces and different standard industrial protocols, including mesh, for data
collection from “dumb” IoT nodes of the Level 1 Swarm and its reliable
forwarding to the Level 2 Swarm node.

T3.1, T3.2 UC-5 High

HP-018 The swarm edge components of the SmartEdge toolchain must be deployable
onto an underlying software framework, such as Kubernetes or ROS 2.
SmartEdge is a series of compatible tools, forming a toolchain, as such it will likely
be deployed on top of a suitable software framework.

T3.1 UC-3 High

Table 2.2: Requirements for Low Code Programming (Section 3.6.6 in D2.1)

ID Task Partner Short Name Related Use Case(s) Priority
LC-005 Mendix should provide match making functionality to matchmake the recipes to

the available device instances.

T3.1, T3.3 SAG UC-4 High
LC-006 Mendix should enable user to instantiate the recipe with selected devices,

configure it and deploy it on the field or Edge.

T3.1, T3.3 SAG, DELL UC-4, UC-3 High

LC-007 Mendix should run on the cloud or the edge.
T3.3 SAG UC-4 High

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

17

LC-008 Mendix should deploy the applications instantiated from recipes on the cloud or
the edge of a system.

T3.1, T3.3 SAG, DELL UC-4, UC-3 High
LC-009 The low-code platform should support various communication protocols to

execute the interactions required for a recipe, e.g., the low-code platform must
support OPC-UA as a communication protocol in UC-4, MQTT/rest, Kafka in UC-5,
and DDS in UC-3 It must be extendable to implement connectors for further
protocols.

T3.1, T3.2 SAG, IMC, DELL UC-4, UC-5, UC-3 High

LC-015 Semantic integration of the data from different sources.

 T3.1, T3.2 Aalto, SAG, IMC,
DELL

UC-2, UC-4, UC-5,
UC-3

Medium

Table 2.3: Requirements for Continuous Semantic Integration (Section 3.6.7 in D2.1)

ID Task Related Use Case(s) Priority

CSI-001 SmartEdge must provide a mechanism so that (swarm) devices/vehicles can
receive information from the environment.

T3.1, T3.2 UC-1, UC-2, UC-3, UC-5 High

CSI-002 SmartEdge must provide standardized semantic interfaces to access any data
from the Edge. This applies for new IoT devices as well as for field devices.

T3.1, T3.2 UC-1, UC-2, UC-3, UC-4,
UC-5

High

CSI-005 SmartEdge must provide mechanisms to formalize external knowledge, (e.g.,
traffic rules or physiotherapists’ rules, therapies, tasks), that are applicable for
the current scene.

T3.1, WP5 UC-1, UC-2, UC-3, UC-5 High

CSI-008 We should have availability of static information about the environment in
standardized format. That is, there should be a way to check physical parameters
in the field (e.g., in UC-2 the location of lanes, what is their logical connection,
what lanes are controlled by what signal heads, in UC-5 the status and location
of a person indoors/outdoors, air quality).

T3.1, T3.2, WP5 UC-2, UC-3, UC-5 High

CSI-010 It must be possible to link the knowledge of the environment derived in CSI-005
with the recipe criteria defined be the Low-Code toolchain.

T3.1, T3.3 UC-2, UC-3 High

CSI-011 An ontology must be provided that allows the common SmartEdge concepts,
such as nodes, smart-nodes and swarms, to be modelled in a knowledge graph,
which can be deployed either in the Cloud, or in the swarm smart-nodes.

T3.1 UC-2, UC-3, UC-4 High

CSI-012 Domain specific ontologies must be defined (or reused) that can be layered on
top of the core SmartEdge ontology that allows domain specific concepts to be
modelled in the knowledge graph. For example, specific characteristics of an
AMR.

T3.1, WP5 UC-2, UC-3, UC-4, UC-5 High

CSI-013 A swarm smart-node must have the ability to correlate sensor data from
different sources on the same device in order to enhance the semantic
understanding of the environment being observed, e.g. it should be possible to
combine sensor streams from LiDAR, cameras, etc. in order to semantically

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

18

annotate objects and other features in an environment in the smart-nodes
internal knowledge graph, the LiDAR giving the physical location of the object or
feature and the camera facilitating the classification based on the same frame of
reference.

T3.2, WP5 UC-2, UC-3 High

CSI-014 The same requirement as CSI-013 by integrating sensor information derived from
other nodes in the swarm.

T3.2, WP5 UC-2, UC-3 High

CSI-015 A task, defined by a recipe, is instantiated by an application. That is the recipe is
a template and a recipe is executed at runtime by an application.

T3.3 UC-2, UC-3, UC-4 High

CSI-016 A recipe has a clear objective or outcome. When the application achieves the
outcome, the application terminates.
T3.3 UC-3 High

CSI-017 A recipe will have zero, one, or many start criteria. These are criteria that must
be met before the application can execute.

T3.3 UC-3, UC-4 High

CSI-018 The steps of a recipe are defined by goals and primitives. A goal is a like a sub-
recipe, in that it has an objective and potentially start criteria. A primitive is some
base behaviour that a swarm node innately knows how to perform. Goals are
broken down into sub-goals and primitives until the sub-goals are completely
decomposed into primitives; at which point the steps necessary to execute a
recipe are completely defined by primitives.

T3.3 UC-3 High

CSI-019 Ideally an abend strategy should be defined for each recipe, so that if an
application should fail during the execution of a recipe, the abend strategy
should be put into action to mitigate, or ideally correct the failure.
T3.3 UC-3 Medium

CSI-020 By virtue of CSI-018 a recipe must know the primitives necessary to execute the
application on a swarm. A mechanism must exist to match up the primitives to
the characteristics of possible nodes in the swarm, and in this way define the
types of nodes that will be required by a swarm to execute an application.

T3.3 UC-2, UC-3 High

This section also refers to an objective, which is in scope of WP3.

Obj.2: Middleware and tools for continuous semantic integration allowing the SmartEdge

solution to interact with devices according to a (i) standardized semantic interface, via a (ii)

continuous conversion process based on declarative mappings and scalable from edge to cloud,

and (iii) providing a declarative approach for the creation and orchestration of apps based on

swarm intelligence.

The three parts of this objective are addressed in Task 3.1 (see Section 3), Task 3.2 (see Section

4), and Task 3.3 (see Section 5), respectively.

KPIs relevant for WP 3 are shown in Table 2.4. The goal of this deliverable is to provide design

of tools for Continuous Semantic Integration. Thus, the progress towards KPIs will follow in the

first implementation of this work, i.e., in D3.2.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

19

Table 2.4: WP3 Key Performance Indicator

KPI number Description
K2.1 Semantic integration should be provided for at least 4 brownfield

protocols and more than 3 green field devices.

K2.2 Message conversion performances increased by at least 80% wrt. to the
baseline.

K2.3 Semantic integration scalability (in terms of maximum concurrent
requests and data velocity) increased by at least 50% wrt. to the baseline.

K2.4 Reduced complexity and configuration time (at least 70%) of swarm
intelligence Apps through the automatic instantiation and orchestration
of template-based specifications.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

20

3 STANDARDIZED SEMANTIC INTERFACES FOR SMARTEDGE

This chapter presents the design of standard interfaces for the SmartEdge middleware. It reports

on our activities from Task 3.1. The contribution includes:

• SmartEdge Schema

• Recipe Model (concept and implementation)

• Domain Specific Ontologies for each use case

• Standardized semantic interfaces.

Figure 3.1 shows the overview of the semantic models that will be designed and developed in

WP3. This figure also shows how the semantic models are related with each other. At the bottom

level are the device semantic models which represent the semantic models of devices used in

all the SmartEdge use cases. On the right-hand side, we see the domain models, which refer to

the existing domain models that can be used for semantic enrichment of the device semantic

models to describe the capabilities of devices. On the other hand, the domain models are also

used in Recipes to describe the capabilities required for a Recipe. A Recipe formally describes an

application template. It specifies the capabilities required for an application and data flow

between the capabilities to realize the application. A Recipe can be instantiated and deployed

on the devices which can fulfil the recipe requirements. An instantiated Recipe can be seen as a

swarm in SmartEdge. SmartEdge schema is used to describe the runtime behaviour of a swarm,

also to monitor a running swarm. Each of these semantic models is explained in detail in the

next sections.

Figure 3.1: Overview of semantic models in SmartEdge

3.1 SMARTEDGE SCHEMA
SmartEdge schema aims to formally define the important concepts of the SmartEdge

architecture which are used in swarm formation and execution. It addresses the functional

requirements CSI-011 mentioned in Table by providing an ontology which defines the common

concepts of SmartEdge and enables them to be represented and stored in a knowledge graph.

Purpose of SmartEdge schema is to enable following swarm functions:

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

21

• It can be used during design time for configuration of a swarm;

• It can be used in run time for identifying the nodes with matching skills which

can join a swarm;

• It can be used to monitor the execution of a swarm (e.g., entry of a node into

swarm, exit of a node and replacing a node in swarm);

It defines the concepts that are common to all swarms regardless of the use case applications,

such as swarm coordinator, its interactions with a swarm orchestrator, industrial knowledge

graph to discover nodes with required capabilities and nodes in the swarm. The role of a swarm

coordinator and orchestrator and the relation between them is explained in Figure 3.2. The

section below explains these concepts.

Swarm: A swarm can be seen as an application that is instantiated from a recipe. It executes the

tasks prescribed in a recipe and achieves the objective of the recipe. The swarm or tasks of a

recipe can be executed centrally by the swarm orchestrator on Mendix runtime. In addition, the

swarm orchestrator can also distribute the tasks to swarm nodes, where the tasks can be

executed in a decentralized fashion using TUB runtime that is being developed in WP5. In order

to formally define the common terms related to swarm and their relationship with each other,

in this WP we develop SmartEdge schema which addresses Requirement CSI-015 from Table .

Swarm Coordinator: The role of a swarm coordinator is to do resource coordination for the

swarm by allocating required nodes to the swarm and manage the swarm to ensure its

successful execution. It is the key component of the swarm as it interacts with different

components inside and outside of the swarm for its successful execution. Figure 3.2 represents

the role of a swarm coordinator in swarm execution. The tasks of a swarm coordinator are the

following:

• Discovering a node that has capabilities to run recipe tasks.

• Connecting to a swarm node.

• Assigning tasks to a node.

• Replacing a node in case a swarm node wants to leave the swarm.

• Monitoring swarm tasks etc.

The swarm orchestrator requests the co-ordinator to provide the swarm nodes required for

swarm execution. For this purpose, the co-ordinator first connects to an industrial knowledge

graph where the device semantic descriptions are stored and runs the matchmaker (which

matches a recipe’s required capabilities with available device capabilities) to discover the

suitable devices with matching skills which could take part in swarm execution. Secondly, the

swarm co-ordinator checks the availability of discovered devices, connects to them, requests

them to join the swarm and onboards the node to the swarm. Once a device joins a swarm, it

becomes a swarm node, and the coordinator provides the swarm node to the orchestrator. In

some cases, the swarm coordinator and orchestrator can reside on the same node.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

22

Figure 3.2: Role of a swarm coordinator and orchestrator in swarm execution

Industrial Knowledge Graph: Industrial Knowledge Graph is one of the key components of the

SmartEdge architecture. It is an RDF repository which is used to store several semantic artefacts

developed in SmartEdge project such as:

• SmartEdge schema for the swarm in execution

• Recipe models developed for use cases

• Device semantic models

• Domain ontologies

• Other semantic artefacts required for the use cases.

The purpose of the knowledge graph is manyfold. It is mainly used for the following purposes:

• For semantic discovery of the artefacts e.g., using SPARQL interface,

• For recipe matchmaking to discover the assets with matching skills to the recipe etc.

One of the good candidates to implement knowledge graphs in the SmartEdge project is the

Web of Things Thing Description Directory (TDD).1 It can be used to store all the semantic

artefacts and it provides two interfaces for querying such as: TD interface and SPARQL endpoint.

TD interface is specially used to discover Thing Descriptions for the repository, whereas SPARQL

endpoint can be used for general SPARQL querying.

Swarm Orchestrator: A swarm orchestrator executes the tasks defined in a recipe in the swarm

using swarm nodes. It connects to the swarm nodes with required skills, which are discovered

and provided to it by the swarm coordinator. In a centralized approach the orchestrator

executes the tasks by interacting with the swarm nodes. In a distributed approach, it assigns the

tasks to each swarm node as prescribed by the recipe and executes the tasks by transferring the

messages or input / output data from the swarm nodes and executing the constraints defined

in the recipe.

In case of dynamic swarms, during the execution of a swarm, if a swarm node may leave the

swarm then the orchestrator requests swarm coordinator to provide another available node

1 https://github.com/thingweb/thingweb-directory

https://github.com/thingweb/thingweb-directory

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

23

with required skills in order to execute the swarm. The role of a swarm orchestrator is depicted

in Figure 3.2.

In the SmartEdge project, the swarm orchestrator can run on Mendix in a centralized approach

e.g., UC4, in this case Mendix can be used to create and run the recipes. In a distributed

approach, the orchestrator can run on TUB runtime that is being developed in WP5. Swarm

orchestrator addresses the required CSI-015 from Table , as it takes care of the execution of

tasks in a swarm that are prescribed by a recipe.

Figure 3.3: Overview of SmartEdge Schema

Figure 3.3 represents the concepts in the SmartEdge schema and the relationships between

them. The main concepts in the schema are the SmartEdge node, SmartEdge smart node, swarm

co-ordinator and the swarm orchestrator. SmartEdge smart node is a subclass of SmartEdge

node where the smart node has the capability to dynamically join or leave the swarm. Each of

these nodes has certain attributes and relationships with other nodes which is depicted in Figure

3.3.

Each SmartEdge node has the attributes such as: node id, node capabilities, network attributes,

location, events it publishes and subscribes, security scheme to connect to the node, its

reachability state etc. which are characteristics of a node. A swarm coordinator has attributes

such as swarm-id, network attributes etc. as it manages the swarm and connects to the nodes

in the network. Swarm orchestrator has a relationship to the recipe which it runs through the

swarm.

3.2 RECIPE MODEL

3.2.1 Definitions

Capability: Capabilities are production-relevant abstractions of functions applied in the context

of a process step. Capabilities are implemented by means of skills. E.g., “drilling a hole with a

depth of max. 20 cm, diameter of max. 10 mm and with tolerance +/- 0.1 mm into certain types

of metals”.

Recipe: A Recipe is a template that specifies the requirements of an application that can be

created by composing one or more things or IoT offerings [Thuluva17], [Thuluva20]. Recipe

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

24

specifies the capabilities of things or offerings required to execute the application. Additionally,

it also specifies the data flow between things or business logic on how the things should interact

with each other to achieve the goal specified by the application. Therefore, a recipe template

mainly consists of two parts: required capabilities and interaction between capabilities as shown

in Figure 3.4.

A capability describes the functional requirements of an application such as the capability of a

thing required for an application. For example: drilling capability, capability to lift a product,

capability to move a product from a to b, capability to detect an anomaly etc. Optionally

capability can also describe non-Functional Properties (NFPs) such as price to access an

ingredient, its location, and others. A thing can have one or more capabilities. It is possible to

link the knowledge of the environment derived in CSI-005 with the recipe criteria in the form of

NFPs. That is, the constraints about the environment can be modelled as NFPs of a recipe

capability that must be fulfilled by a matching device or offering in order to instantiate a recipe.

They are defined in the device semantic model of a thing using standardized domain semantics.

In SmartEdge the capabilities of a thing can be specified as interaction patterns in case of things

using Web of things standard, or as FX capabilities in case of things using OPC UA standard as

shown in Figure 3.4.

An interaction defines how two capabilities should interact with each other to fulfil a task or

achieve a sub-goal of a recipe. It specifies the source and destination capabilities of an

interaction. It also defines the operations (e.g., Retrieve, Create, publish, subscribe etc.) that

should be executed on each capability to get the required information/output from a capability

and execute an application. Furthermore, an interaction also specifies the constraints or

conditions for interaction. Lastly, the business logic that should be executed for the application

based on the information retrieved from the capabilities can be defined as part of an interaction.

Therefore, the objective of an application can be defined using a recipe by describing the tasks

and goals of the application. A task can be defined in a recipe using its capabilities and

interactions. One or more tasks can be used to define a goal.

A recipe can be created using low-code application development tools such as Medix, Node-RED

etc. In these tools the capabilities are represented as graphical nodes. A user can drag and drop

the nodes and they can implement the interactions between the nodes (business logic) as scripts

in any programming language. The capability nodes and interactions can be interlinked with

each other in a desired way to create a recipe. The graphically created recipe can then be saved

for later use. Furthermore, a recipe semantic model can be generated from the graphically

created recipe which can be stored in an industrial knowledge graph and used during the

instantiation of a recipe.

A recipe semantic model is a formal description of a recipe in RDF format. It mainly contains the

semantic description of the required capabilities, and the dataflow between the capabilities that

is represented through the interactions. However, the business logic present in the interactions

is not part of the recipe semantic model. The main purpose of the model is two-fold. Firstly, it is

used to discover the recipes required for an application. Secondly, it is used during matchmaking

to discover the things or IoT offerings which have the capability to implement the recipe.

In SmartEdge project there are few requirements for a recipe where it should specify the

following requirements:

• objective of the task

• roles (capabilities & constraints) needed to perform the task

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

25

• any required starting conditions

• goals and subgoals necessary to complete the task

• conditional transition between goals or sub-goals

• topics related to the transitions

• event messages that will be published when the transitions occur

• any abend conditions and actions.

These are the requirements for recipes in SmartEdge (these requirements are taken from D 2.1:

swarm Recipes). As explained in the previous paragraphs a recipe can specify the objective of an

application or a swarm, its goals, tasks and sub-tasks. The starting or triggering conditions for an

application can also be specified using a recipe. Topics or event messages can be published by

capabilities, and they can be subscribed by other capabilities in a recipe. Moreover, one or more

recipes can be composed together to achieve a broader goal.

Figure 3.4: Recipe Model

Here we present a sample recipe for use case 3 to show how requirements for an application,

its goals, tasks, and constraints can be specified in a recipe. The recipe specifies the requirement

for the application to move a manufactured product which is ready for pick up to an appropriate

mobile rack. For details about the application please refer to D2.2. Figure shows the recipe with

its required capabilities and interactions. In the next paragraphs we explain the recipe in detail.

The objective of the recipe is to place the manufactured product in an appropriate mobile rack.

To fulfil this objective, the recipe should achieve the following goal: move the product from the

end of the conveyor belt to the chosen mobile rack. Several tasks should be done to achieve this

goal such as the following:

• Task1: Identify the mobile rack where the product should be placed as per the product

description.

• Task2: Pickup the product when the product is ready for pick up.

• Task3: Move the product from pickup station to mobile rack position.

• Task4: overcome obstacles (if any) while moving the product.

• Task5: place the product in the mobile rack.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

26

A task is specified in a recipe with one or more capabilities and interactions between the

capabilities. In our sample recipe, consider Task 3, Figure shows how this task is specified in the

recipe. It is specified using the capabilities “FindMobileRack”, “MoveProductToRack” and the

interactions between them. In this way all the tasks mentioned above are specified in the sample

recipe using its capabilities and interactions.

The starting or triggering condition means the condition that should be met to start the recipe

execution. It is specified in the sample recipe using the capability “ProductReadyForPickUp” and

the interaction below it. It means that when the “ProductReadyForPickUp” event occurs then

the product is at the end of the conveyor belt, and it is ready to be moved to the mobile rack.

Therefore, the recipe execution should start to move the product.

Conditional transitions are represented in the interactions. Every capability in a recipe should

support certain operations such as create, retrieve, update, publish, subscribe etc. using which

information can be sent or retrieved from the corresponding thing or IoT offering. Using these

operations, we can define the publishing of event messages from a thing or subscribing to event

messages from a thing in a recipe.

In this way, a simple recipe model can specify applications and its requirements. In the first

phase of the project, we focus on the centralized approach where a recipe will be executed

centrally on the Mendix runtime for all the use cases. For this approach, the current recipe

model is sufficient. Recipe model can be extended in the later phases of the project to suit the

requirements of a decentralized or distributed approach which will be implemented on TUB

runtime in WP5.

Figure 3.5: Sample Recipe for UC 3

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

27

Figure 3.6: Recipe task definition: Move product to mobile rack

In SmartEdge project there are 5 use cases. To understand and address the requirements of all

the use cases for recipes, we performed requirement analysis for each use case. In the next

section we present the results of the analysis.

3.2.2 Requirement Analysis

There is a lot of diversity in the use cases of SmartEdge project, each one of them is focusing on

different domains and heterogenous applications. Use case 1&2 focus on smart traffic

management domains, whereas as use cases 3&4 focus on smart manufacturing domains. On

the other hand, use case 5 focuses on the health care domain.

Therefore, it is essential to understand the requirements of each of these use cases to

understand the applications they would like to demonstrate, identify the capabilities required

to implement the applications. Moreover, to understand the physical and virtual devices and

assets (or IoT offerings) that will implement the applications. With this purpose we conducted

requirements analysis for each use case. For this task we posed some questions to each use case

to identify the applications in the use case. Additionally, we also provided them some templates

to understand their requirements regarding capabilities and devices required for their

applications. Use case owners proactively participated in the requirements analysis and

provided the required information. In addition to this, we conducted interviews with each use

case team to determine the requirements further. As a result of this entire process, we could

identify the semantics required for device semantic interfaces of the devices, capabilities offered

by the devices and capabilities required for the applications. We further identified the recipes

for each use case. These results will be used throughout WP3 for the design and development

of recipe model, device semantic models, and capabilities. Below we present the questions,

templates, and results of the analysis for each use case.

Questions:

1. Which applications do you envision in your use case?

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

28

2. What are the capabilities required to realize the application?

3. What are the devices used in the use case?

4. What are the capabilities implemented by the device?

These questions are addressed using a table as shown below.

Detailed description about each use case can be found in D2.2. In this deliverable we would like

to focus on the requirements of use cases for semantic models such as recipes that the use case

owners like to implement to showcase their use case. The capabilities that should be

semantically modelled to use in recipes. The assets (devices, things and offerings) that should

be modelled using standardized models such as Web of Things Thing Description, OPC UA etc.

and the domain semantic models that should be used for the use case are the focus of this

deliverable.

3.2.2.1 Requirement Analysis for Use Case 1

Table 3.1 presents sample application(s) from use case 1 and the capabilities required to run the

application. An application can be formalized as a Recipe which is the composition of one or

more capabilities. Recipe specifies the task, or an application and the capabilities required to

implement the task on assets. A capability is implemented on assets or things. Table 3.2 lists the

assets from use case 1 which implement the capabilities required specified in for the application.

Table 3.1: Use Case 1: Applications and Their Required Capabilities

Application Required Capabilities

SmartEdge integration with a

virtual environment

1. Detecting brightness level
2. Enabling / Disabling a light source

Semantic assessment of

ADAS systems using sensor

fusion

3. Semantically describe the current state of a system of
combined sensors. In UC1 this would be a car and its
sensors and different cameras.

Changing scenes to

generated alternate test

cases

Same as previous application scenario

Table 3.2: Use Case 1: Mapping Capabilities to Things (SmartEdge Nodes)

Capability (from above table) Things (nodes) that have the skills to implement the

capability

1. Brightness Sensor Measure the environment’s brightness, for example for
automatic light control in tunnels or during nights. The
measurement should be fine grained enough to differentiate
between day and night times as well as direct or indirect sun
light (e.g., driving through a tunnel).
The thing is provided as virtual sensor within the virtualization
environment of UC1 but could be based on a real sensor.

2. (Light) Switch Providing the ability to switch an actuator between two states

whereas the two states are on / off of a light source in UC1

(like a street light that can be turned on and off). The thing

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

29

will be provided as virtual actuator within the virtualization

environment of UC1 but could be based on a real one.

3. Car In UC1 a car can be seen as the composition of multiple car
specific things. The things are simulated in the virtual
environment and will provide data via smart edge semantic
interfaces. The following things are used to create a semantic
scene based on sensor fusion.

- LiDAR: Provides point cloud measuring in terms of
RGBD Video Streams or Images

- Ultrasonic Sensors: Short distance object detection
- Radar: Detection of objects on roads
- Camera: Providing video stream from a car’s

environment, a car may have multiple cameras
- Location: Latitude, Longitude, Altitude, Direction,

Speed based on changes in the geolocation over time
- Speed: The current speed of the car which could be

different to the speed that is based on geolocation
data

3.2.2.2 Requirement Analysis for Use Case 2

Similar to use case 1, the semantic requirements for recipes, capabilities and device semantic

models for use case 2 are presented in Table 3.3.

For example, use case 2 would like to implement an application such as “Option zone monitoring

and optimization of vehicle flow” to monitor and optimize the option zone near the traffic light

signals at intersections. This application can be implemented as a recipe where the required

capabilities are “getting real-time location and speed of vehicles”, “calculating vehicle count in

the option zone”, “calculating vehicle to vehicle distance and speed” etc. as listed in Table 3.3.

These capabilities can be implemented on assets such as Sensor Node (an edge device

connected to radars and cameras), Vehicle Node (with built-in sensors and V2X OBU), etc.

Therefore, the semantic requirements for this use case are to define the mentioned capabilities,

device semantic models for nodes such as sensor node, radar, camera, built-in car sensors, and

traffic controller, using standardized domain semantic models.

Table 3.3: Use Case 2: Applications and Their Required Capabilities

Application Required Capabilities

Option zone monitoring and

optimization of vehicles flow:

Especially when the traffic signal state

is yellow, in which case each

driver/vehicle in the option zone may

decide either to accelerate and pass

before the red sign appears, or to

brake and slowdown. Such different

decisions among vehicles may increase

the risk of back collisions near the

traffic lights. To tackle such issues, UC2

monitors the option zone traffic

1. Real-time detection of vehicles near the

traffic light signal. Detecting vehicles that are

moving on specific road and/or specific lane

towards the stop line. This needs real-time

probe of vehicles at high frequency

resolution (10 Hz)

2. Obtain current traffic light signal status

(whether it is yellow, green, red, etc.)

3. Calculate real-time traffic indicators per each

traffic light:

a. Vehicle count in the option zone

b. Vehicle to vehicle distance and speed

c. Number of approaching vehicles

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

30

situation near intersections, decides

on the required actions, and sends

action commands to the vehicles and

traffic lights to optimize the traffic.

d. Queue length (Number of stopped

vehicles in the queue or the length in

meters)

4. Decide on the required actions for the option

zone

5. Send action commands (SPAT message) from

the infrastructure to the vehicles

6. Control the traffic lights (change traffic light

statuses/colors if needed)

Table 3.4: Use Case 2: Mapping Capabilities to Things (SmartEdge Nodes)

Capability

(Numbers

from the

above

table)

Things (nodes) that have the skills to implement the capability.

No. 1 Smart nodes with the required skills:

• Sensor Node

• Vehicle Node

Some Details:

• Passive detection performed by our Sensor Node that has the:

o Radar object measurement

o Camera object detection

• Active detection: Connected V2X-enabled vehicles periodically send

their geolocation, speed, acceleration, etc. Via V2I communication.

Uses:

o Built-in car sensors to measure car’s location, speed, etc.

o V2X on-board unit of the car

No. 2 Smart nodes with the required skills:

• Controller Node (Traffic Light Controller)

No. 3 Smart nodes with the required skills:

• Traffic node

o Metric Twin

Some Detail:

The Metric Twin sub-component of the Traffic Node calculates traffic indicators

based on the data received from the Sensor nodes and Controller node.

No. 4 Smart nodes with the required skills:

• Controller Node

Some Detail:

The decision logic works based on the calculated traffic indicators (by Traffic

Node) and the traffic light status.

No. 5 Smart nodes with the required skills:

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

31

• Controller Node

Some Detail:

The traffic controller node sends SPAT messages via a V2X Module to the

Connected Vehicles.

No. 6 Smart nodes with the required skills:

• Controller

3.2.2.3 Requirement Analysis for Use Case 3

Similar to use case 2, the semantic requirements for recipes, capabilities and device semantic

models for use case 3 are presented in Table. In section 3.2 we explained in detail an example

application from use case 3 such as “move product to a mobile rack”. We showed how a recipe

can be used to specify the application requirements, goals and tasks. Please refer to Figure and

Figure for details.

Table 3.5: Use Case 3: Capabilities and Skills

Use Case Required Capability Capabilities that should be implemented on Assets

3 Product mover • move across floor in 2 dimensions

• lift product vertically from underneath

• classify objects using camera images

• measure distance to surfaces using LiDAR

• measure distance to surfaces using

stereoscopic camera

• receive image data from camera streams

• triangulate position and pose of objects based

on cameras streams

• construct SLAM map from measurement data

• construct Semantic SLAM map by fusing SLAM

map with object classification

• motion planning to move product

• motion planning to navigate factory floor

• automatically detect obstacles from Semantic

SLAM map

• avoid obstacles detected in Semantic SLAM

map

• communicate obstacles to other SMARM

nodes

• select mobile storage rack based on product

type.

• forward information on product being moved.

• immediately halt if humans detected in local

vicinity

3 Mobile storage rack • store products of specified type in rack slot

• record slot of specific product instance in rack

• apply rack brake.

• detect product in slot

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

32

• provide list of slot and product information

• knows next process operational area for

products

• automatically request storage mover when full

to tow to next process operational area

3 Storage mover • move across floor in 2 dimensions

• connect to mobile storage rack

• instruct mobile storage rack to release and

apply brake

• able to tow mobile storage rack

• classify objects using camera images

• measure distance to surfaces using LiDAR

• measure distance to surfaces using

stereoscopic camera

• receive image data from camera streams

• triangulate position and pose of objects based

on cameras streams

• construct SLAM map from measurement data

• construct Semantic SLAM map by fusing SLAM

map with object classification

• motion planning to navigate factory floor

• automatically detect obstacles from Semantic

SLAM map

• avoid obstacles detected in Semantic SLAM

map

• communicate obstacles to other SMARM

nodes

• immediately halt if humans detected in local

vicinity

3 Product conveyer • move product out of processing area for

collection

• read RFID tag for specific product instance

information

• request product to be removed from conveyor

• forward product specific product instance

information

3 Overhead image

capture

• capture images using camera

• blur human faces

• stream images to remote swarm node

3.2.2.4 Requirement Analysis for Use Case 4

Similar to use case 2 and 3, the semantic requirements for recipes, capabilities and device

semantic models for use case 4 are presented in Table, Table 3.7 and Table 3.8. Use case 4 is an

industrial use case focusing on optimizing the manufacturing process by enabling custom

production, anomaly detection and efficient production planning. For these applications,

capabilities such as custom configuration of a product, ability to detect anomalies etc are

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

33

required. It uses assets such as manufacturing unit, camera, NPU etc to realize the recipes.

Semantic requirements for use case 4 are explained in detail in Section 3.2.3.

Table 3.6: Use Case 4: Applications and Required Capabilities

Use Case Application Required capabilities

4 customized production

Description:

Customer can

dynamically configure

the order of colour

blocks for his product

on Mendix.

There are five colour

blocks available for

creating a new product

on the demo

manufacturing unit.

They are green, blue,

white, red and yellow.

The Recipe offers

flexibility for a user to

dynamically configure

the colours and their

order for his new

product.

• Configuring the colours of block of a product

to be manufactured

• Manufacture the product.

• Place the finished product on the end station.

• Notify AGV/user about finished product

Table 3.7: Use Case 4: Capabilities and Corresponding Skills

Use Case Required Capability Capabilities that should be implemented on Assets

4 Configuring the

colours of block of a

product to be

manufactured

• Colour blocks

• Identify required color block

• Lift the block

• Identify tray

• Place the block in tray

4 Manufacture

configured product

• Move the tray

4 Place the product on

end station

• Identify the tray containing finished product

• Move the product to end station

• Notify user to pick up product

The table below further provides the requirements for devices and their characteristics in UC4.

Table 3.8: Use Case 4: Device / Asset with Required Skills and Characteristics

Use
Case

Device Capabilities on
Assets / Properties,
Actions & Events

Protocol Service
framework

Characteristics of
device

Smart
Node

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

34

3.2.2.5 Requirement Analysis for Use Case 5

Similar to use case 2, 3 and 4, the semantic requirements for recipes, capabilities and device

semantic models for use case 4 are presented in Table 3.9, Table 3.10 and Table 3.11. Use case

5 falls under the health care domain. The applications in this use case do not need to be

implemented using recipes. However, other semantic models such as device semantic models

are relevant to this use case to model assets such as tablet, Nordic thingy52, Raspberry Pi board,

pantilt, laser pointer, BLE connectors, mobile app etc.

Table 3.9: Use Case 5: Applications and Required Capabilities.

Use

Case

Application Required capabilities

5

(HES-

SO)

The users of UC5 are

intended to be patients

(PAT) rehabilitating their

neck or individuals

undergoing neck

sensorimotor

assessment, and

physiotherapists (PHY).

PHY can define and

assign the tasks to be

performed by PAT.

PAT has to put on

wearable sensors

(number variable

according to the needed

• Profiling PAT via tablet/web interfaces

• PHY can create sessions and tasks for PAT

• The system has to project images/pointers on

PAT’s surroundings complying with the

sessions/tasks created.

• The system has to acquire PAT’s movement via

wearable sensors

• The system has to provide run-time feedback to

PAT during the tasks’ execution (via wearables

and tablet)

• PHY can annotate the PAT’s tasks

• The system has to analyze PAT’s data

• Wearable sensors have to be place-and-play

• Wearable sensors can be replaced on-the-fly

4 Robot
Arm

Properties

• Arm status

Actions:

• Lift a block,

• place a

block on a

tray,

• identify the

colour of

the block,

• scan the

block

Events:

• Block not

found

notification,

• Block

placed on

the tray

notification

OPC UA Mendix • Device

Fixed/Mobile

• Physical

dimensions

• Weight it can

lift etc.

No

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

35

activity) and can select

the tasks to be

performed on a tablet.

PAT is required to follow

pointers and/or images

projected on their

surrounding walls. PAT

are profiled and all their

sessions/tasks are

stored to allow further

analysis.

• Wearable sampling frequency and

communication rate can be modified at the lunch

of the application

• Inter-sensor communication has to be seamless

and standardized

• Wearables Migration should be allowed

• Neck movements (angles/speed) should be

computed, and acquired-stored

Table 3.10: Use Case 5: Capabilities and Corresponding Skills

Use

Case

Required Capability Capabilities implemented on Assets

5

(HES-

SO)

A. Profiling PAT via tablet/web interfaces A.1 -The application should allow PHY to

enter new patients.

A.2 - PAT should have a profile on the

system and be able to login and follow the

assigned tasks.

B. PHY can create sessions and tasks for

PAT

B.1 - PHY can create tasks: assigning them

a name, description, duration, etc.

Defining a task comprises specific

motions (e.g., angles, directions, pace, ...)

C. The system has to project

images/pointers on PAT’s surrounding

walls complying with the sessions/tasks

created.

C.1 - A laser pointer mounted on a pan-tilt

and connected to an embedded board

has to enact the movements specified in

the tasks.

D. The system has to acquire PAT’s

movement via wearable sensors

D.1 - PAT has to follow with their gaze the

pointers (executing the task). Wearable

sensors placed on PAT will acquire inertial

data and send them to a SmartEdge node

(I.e., a tablet).

E. The system has to provide run-time

feedback to PAT during the tasks’

execution (via wearables and tablet)

E.1 - The tablet has the duty of

coordinating the data coming from the

self-organized wearables and reconstruct

PAT movements.

F. PHY can annotate the PAT’s tasks

F.1 - Once the acquired inertial data will

be processed and form a trajectory

(space/time), PHY should be able to see

and assess/annotate it.

G. The system has to analyze PAT’s data

G.1 - besides PHY’s annotation, the

system should perform PAT’s tasks

analysis via pre-defined symbolic rules

H. Wearable sensors have to be place-

and-play

H.1 - The wearables (smartEdge nodes)

will have to be turned on an placed

seamlessly. It means that after their

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

36

positioning, the wearables must be able

to understand their role (i.e., via an

inverted kinematic chain).

I. Wearable sensors can be replaced on-

the-fly

I.1 - Sensors might fail (i.e., flat battery)

and a seamless sensor replacement on-

the-fly must be allowed.

J. Wearable sampling frequency and

communication rate can be modified at

the lunch of the application

J - The streaming and messaging

frequency of the wearables might depend

on the assigned task. Hencheforth, the

streaming rate must be variable.

K. Inter-sensor communication has to be

seamless and standardized

K.1 - Wearables must be able to talk with

a SmarEdge Orchestrator (to be

investaged if a p2p communication is

needed).

L. Wearables Migration should be

allowed

L.1 - Besides being replaced, wearable (or

any sensor involved in UC5), might be

required to migrate from one

orchestrator to another and to change

the performed tasks.

M. Neck movements (angles/speed)
should be computed, and acquired-
stored

M.1 - The SmartEdge orchestrator must

be able to retrieve, filter, align, and

process the inertial data received by the

wearables.

Table 3.11: Use Case 5: Skills and Assets That Implement Them

Use Case Capabilities

implemented

on Assets

Hardware/Software Device/Asset

UC5

(HES-SO)

A.1 H: tablet, PC
S: mobile-interface, web-interface, SmartEdge Orchestrator &
Node

A.2 H: Tablet, PC
S: mobile app, back-end server

B.1 H: Tablet, PC
S: mobile app, back-end server

C.1 H: tablet, Raspberry Pi board, pantilt, laser pointer, BLE
connectors
S: mobile app, and SmarEdge Orchestrator & Node code

D.1 H: tablet, Noprdic thingy52, Raspberry Pi board, pantilt, laser
pointer, BLE connectors
S: mobile app, and SmarEdge Orchestrator & Node code

E.1 H: tablet, Noprdic thingy52, Raspberry Pi board, pantilt, laser
pointer, BLE connectors
S: mobile app, and SmarEdge Orchestrator & Node code

F.1 H: tablet, PC
S: mobile & web app, and SmarEdge Orchestrator & Node code

G.1 H: tablet, PC
S: mobile & web app

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

37

H.1 H: tablet, Nordic Thigy52
S: mobile app, SmartEdge Orchestrator & Node code

I.1 H: tablet, Nordic Thigy52
S: mobile app, SmartEdge Orchestrator & Node code

J.1 H: tablet, Nordic Thigy52
S: mobile app, SmartEdge Orchestrator & Node code

K.1 H: tablet, Nordic Thigy52, Raspberry Pi
S: mobile app, SmartEdge Orchestrator & Node code

L.1 H: tablet, Nordic Thigy52, Raspberry Pi,
S: mobile app, SmartEdge Orchestrator & Node code

M.1 H: tablet, Nordic Thigy52
S: mobile app, SmartEdge Orchestrator & Node code

3.2.3 Recipe Model for Use Case 4

Use case 4 is an industry use case that demonstrates flexible manufacturing of a product.

Therefore, it uses the well-established industry standard called OPC UA (Open Platforms

Communication Unified Architecture). The standard provides both the communication protocol

and semantic models for modelling the information for interoperability. Therefore, in this use

case we use both OPC UA communication protocol and its semantic models which are provided

by OPC Foundation as the companion specifications and their information models.

OPC UA FX:

OPC UA FX is one of the standards developed by OPC Foundation. OPC Unified Architecture Field

eXchange (UAFX)2 extends the OPC UA model to enable field device interconnection. It aims to

facilitate controller-to-controller interactions. Additional interactions – controller-to-device,

device-to-device, and controller-to-compute – are intended to be addressed in future releases.

The current objective is to provide a standardized field component model (information and

interfaces) alongside an information exchange model. The emphasis is on enabling timely data

delivery, security, and functional safety. UAFX defines an asset component that can represent a

security key or software license. Such assets can be referenced by and/or installed within a

controller.

OPC UA FX introduces several significant model entities as shown in Figure :

AutomationComponent

Represents an entity that performs one or more automation functions (e.g., a representation of

one or more related field devices).

FunctionalEntity
An information model identifying a set of related FX input data, output data, configuration data,
diagnostic information, and methods to manipulate and/or share the data.
Connection

A logical relationship between FunctionalEntities.

ConnectionManager

Responsible for establishing (and removing) Connections.

Asset

Represents a component with a lifecycle (e.g., versioning).

2 OPC UA FX is an outcome of the OPC UA Field-Level Communication (FLC) Initiative.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

38

Figure 3.7: FX Model Entities

The significance of these entities is in their ability to provide a level of model specificity

previously missing from OPC UA. This specificity is well aligned with concepts needed to support

a Skills-oriented perspective.

AutomationComponent

An AutomationComponent is an entity that performs one or more automation functions and

provides connection capabilities. The AutomationComponentType is composed of two major

sub-information models, asset model and functional model. It also provides information related

to offline engineering, general metadata such as communication capabilities and the health

status. Figure provides an illustration of this model.

Automation Component

Hard assets

Soft assets

Functional ModelAsset Model

Controller Input
Module

Controller Firmware Input Module
Firmware

Output Module
Firmware

Output
Module

References

Offline Descriptor General Metadata Health Status

Input data

Configuration
data

Output data

Identification properties

Diagnostic data

Diagnostic event

Functional Entity

Processing

Relationships RelationshipsRelationships

Figure 3.8: A conceptual overview of an OPC UA FX automation component.

The AutomationComponent is the base model for an OPC UA FX device/controller/PLC/etc. It

includes information related to current asset(s), the available functionality, the capabilities

(including communication related capabilities) and any offline information. The

AutomationComponent provides for grouping Asset instances and FunctionalEntity instances. It

exposes a Method that is used to establish logical connections between instances of

FunctionalEntity. An overview of the AutomationComponent information model is illustrated in

Figure .

Automation Component

Assets

Functional

Entities

Connection

Manager

Automation Component

Assets

Functional

Entities

Connection

Manager

Communication Channel

References

Relationships

Relationships

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

39

Figure 3.9: An overview of the AutomationComponent information model.

DeviceHealth and DeviceHealthAlarms provide an overall health status of the

AutomationComponent instance. This includes a summary of all included Assets and

FunctionalEntities. Each Asset and FunctionalEntity might include additional diagnostics that

are more specific. For a complete description see OPC 10000-100.

The FunctionalEntity information model is the base model for describing all functionalities in

an OPC UA FX information model. Functional entities encapsulate logical functionality.

Functional entities are designed in a way that they can describe functionality of any complexity

ranging from the acquisition of a single measured value to controlling an entire machine or

production line. Functional entities can also be preconfigured and fixed (e.g., a device such as a

drive) or they can be dynamically created during engineering or at run time. A logical

functionality is viewed as an identifiable process with properties, inputs, outputs, and a

configuration that generates events and diagnostic data (see Figure).

Figure 3.10: Key aspects of the Functional Entity model.

A functional entity can interact with other functional entities by exchanging data. It provides

methods for the manipulation or sharing of the data. The exchange of data may be for control

or monitoring purposes. Interactions are represented as logical connections (which in turn are

modeled as a Connection. Inputs and/or outputs can be arranged into logical groups to ease

configuration, simplify establishing interactions, and/or to restrict access. Inclusion in one group

does not preclude inclusion in other groups. Functional Entity information model is described in

detail in Figure .

Input data

Configuration
data

Output data

Identification properties

Diagnostic data

Diagnostic event

Functional Entity

Processing

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

40

The functional entity information model is illustrated by Figure with the key members described

as follows:

Identification properties:

• Identity - When establishing a logical connection between functional entities, it may

be essential to confirm identity, meaning to check that the other functional entity is

the one that is expected. Therefore, functional entities provide the information and

methods to perform such identity verifications.

• Input data - describes the values that may be provided from another functional

entity and consumed by this functional entity.

• Output data - describes the values that are provided by the processing of this

functional entity and are available for other functional entities to consume.

• Configuration data - describes any value that is used to set up and configure

functionality.

• Diagnostic data - The functional entity maintains information related to the status

of its functionality, including the status of any logical connections. This may include

the generation of events or alarms related to problems or issues encountered by the

functional entity.

A functional entity can be of varying degrees of complexity and can represent different

granularity and abstraction levels, from primitive functionality to an entire application. It is

expected that the FunctionalEntity model will be subtyped by other models. It can have sub-

functional entities and relationships to other objects defined in this model or in other models.

For example:

There are primitive functional entities that only generate output data like a temperature sensor

or only receive input data like a relay.

More complex functional entities like a motion axis can receive control data, perform a

calculation or action, provide status data, and have different operation modes, including closed-

loop controls.

There are also functional entities on the process application level representing an entire

application such as a paper machine or a boiler, where the functional entity has multiple nested

sub functional entities.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

41

Figure 3.11: Overview of the FunctionalEntity information model.

OPC UA Field level exchange. It describes the field devices, their attributes and functionalities

provided by them in a domain agnostic way. Therefore, we use the OPC UA FX information

model as a basis to define capability in UC4. It means, the capability model in UC4 is based on

OPC UA FX, which is shown in Figure .

Capability Definition:

Capability is an implementation-independent description of the function of a resource to

achieve a certain effect in the physical or virtual world. Capability represents required resource

functionality from a resources system such as tool, machine, production cell etc. to fulfill a

production function for a manufacturing process unit. In our view, so defined Capability matches

the role of FunctionalEntity in OPC UA FX. Therefore, our CapabilityType extends

FunctionalEntityType as shown in Figure .

In a general sense, Capability defines an automation function. As such, it may have inputs,

outputs, configuration parameters, access-rights metadata etc. This information is captured by

FX FunctionalEntityType, see Figure . FunctionalEntities encapsulate logical functionality, which

can include function blocks, IO module functionality, drive functionality, sensor functionality,

actuator functionality, or more complex logical items. From that point of view, FunctionalEntities

can be used to realize Capabilities.

The Capability also defines the range of parameters and dependencies or constraints that are

partially derived from a product definition and partially from the manufacturing process. The

product definition aspects can be aspects of geometry, tolerance, quality inspection etc. For

some of this information FX model needs to be extended with other OPC UA Companion

Specifications and semantic models (ontologies).

Capability is the key to enable capability-based (continuous) engineering. Capability needs to

have description in a machine-readable format and in the right level of abstraction.

Capability, as realized with FX FunctionalEntity, provides the right level of abstraction. It is given

in a machine-readable format. Moreover, it is standardized by the OPC Foundation. It can be

extended with other models, e.g., OPC UA Companion Specifications, and as such may enhance

interoperability across different vendors. As shown in Figure 3.13, capabilities for different

companion specifications e.g., Robotics, PackML, Machine Vision, Machine Tools etc. can be

created using the FX capability model which enables interoperability across vendors.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

42

Figure 3.12: CapabilityType Definition using OPC UA FX

Figure 3.13: Overview of OPC UA Information models layer cake for OPC UA Capabilities

As we mentioned before, in SmartEdge project capabilities and Recipes for UC4 are created

using FX capability model. Here we would like to present an example of a recipe for UC4.

The sample application that we would like to showcase here is customized production on the

manufacturing unit with production planning. Using this application, a user can configure and

customize the product that should be manufactured. The recipe lets the user configure the order

and it will check if the manufacturing process of the new product can be fulfilled with the existing

resources available on the unit. If the resources are not available, then they will not be

manufactured, and the recipe sends a message that the product cannot be manufactured. The

recipe is illustrated in Figure .

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

43

Figure 3.14: Sample Recipe for UC4

3.3 DOMAIN SPECIFIC ONTOLOGIES
In this section we review few domains specific ontologies that are relevant for SmartEdge use

cases. Our aim is to re-use existing, well defined domain specific ontologies as much as possible.

The static knowledge about an environment can also be modelled using existing domain

ontologies. If the suitable ontologies do not exist then new ontologies can be introduced in order

to model the external knowledge or static knowledge that is required for the SmartEdge use

cases (this addresses the requirements CSI-005 and CSI-008). These ontologies can be used in

SmartEdge in multiple ways. They can be layered on top of device semantic descriptions; they

can be used in a recipe to define capability constraints. They can be used in SmartEdge ontology

(for example to model specific characteristics of an AMR.) etc., to allow domain specific concepts

to be modelled in the knowledge graph, this addresses the requirement CSI-015.

3.3.1 The IEEE Standard for Autonomous Robotics

The IEEE Standard for Autonomous Robotics (AuR) Ontology (IEEE, IEEE Standard for

Autonomous Robotics (AuR) Ontology, 2022) extends the Core Ontology for Robotics and

Automation (CORA) (IEEE, IEEE Standard Ontologies for Robotics and Automation, 2015) to

provide a standardized representation of knowledge specific to autonomous robotics. This

extension enables the clear identification and understanding of the components essential for

building autonomous systems capable of functioning in diverse environmental conditions. The

components of an ontology include individuals, classes, relations, and axioms, typically

expressed in first-order logic (FOL) or web ontology language (OWL). In IEEE standard, ontologies

are categorized as upper-level, reference, domain, or application, as illustrated in Figure 3.15.

Figure 3.15 IEEE Standard for Autonomous Robotics (AuR) Ontologies Classification

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

44

Upper-level Ontology:

• Focuses on widely applicable concepts like object, event, state, and quality, along with

high-level relations.

• Addresses fundamental and generic concepts, applicable across various domains.

Reference Ontology:

• Concentrates on a specific discipline, ensuring high reusability within that field.

• Provides a standardized framework for a particular field.

Domain Ontology:

• Focuses on a more limited area, such as autonomous or collaborative robotics.

• Contains vocabulary specific to a domain, covering concepts, relationships, activities,

theories, and principles.

• Specializes concepts from upper-level and reference ontologies.

Application Ontology:

• Includes definitions necessary for modeling knowledge in a particular application, such

as a robot grasping system or SLAM.

• Tailored to the requirements of a specific application domain.

• Provides a practical implementation of ontological concepts for real-world use.

In SmartEdge, AuR is used to model data elements related to SLAM (Simultaneous Localization

and Mapping). SLAM uses collaborative maps to capture the surroundings and determine the

positions of multiple robotics in UC3. Leveraging ontologies from the AuR ontology, particularly

application ontologies, SmartEdge enhances SLAM by providing a tailored knowledge

representation for the simultaneous localization and mapping process, called Semantic SLAM.

These ontologies ensure precision in modelling intricate relationships and concepts, contribute

to interoperability through reference standards, and facilitate seamless integration with various

robotics-related disciplines. Semantic SLAM would include following ontology-based data

elements (Cornejo-Lupa, 2021):

▪ Robot Information: Captures the robot's characteristics, capabilities, and location

within the environment.

▪ Environment Mapping: Represents the surrounding objects, their features, and their

positions.

▪ Timely Information: Records the robot's movements and the duration of its actions.

▪ Workspace Information: Defines the overall characteristics of the mapped area and

domain-specific entities.

3.3.2 OPC UA Information Model for Robots

The OPC UA Robotics Companion Specification extends OPC UA standard to the field of robotics.

3, 4 In essence, it provides a framework for seamless communication and integration between

different robotic devices and systems. It defines standardized methods for exchanging

information related to robotic capabilities, status, and control commands. This specification

3 https://opcfoundation.org/markets-collaboration/robotics/
4 https://reference.opcfoundation.org/Robotics/v100/docs/

https://opcfoundation.org/markets-collaboration/robotics/
https://reference.opcfoundation.org/Robotics/v100/docs/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

45

aims to create a common language for robots and automation systems to understand and

interact with each other, promoting a more flexible and collaborative industrial environment.

The OPC UA Robotics Companion Specification includes an Information Model that serves as a

structured representation of the data and functionalities related to robotics within the OPC UA

framework.

The Information Model defines a standardized way to represent information about robotic

devices, their components, capabilities, and states. It organizes data into a hierarchical

structure, allowing for a clear and consistent description of the robotic system. This model

covers aspects such as kinematics, dynamics, and other relevant properties of robots.

By using the OPC UA Information Model, robotic devices can share a common understanding of

their environment and capabilities. This enables seamless communication between different

robotic systems, as well as with higher-level automation and control systems. It promotes

interoperability by ensuring that all devices adhere to the same data representation standards,

fostering easier integration and collaboration in industrial settings.

3.3.3 OPC 30050: PackML - Packaging Control

The OPC UA PackML (Packaging Machine Language) Companion Specification5 extends the OPC

UA standard to the domain of packaging machinery, providing a standardized way for these

machines to communicate and integrate within industrial systems. It provides the following

models for packaging machinery; however it can be used to define communication between

machines in a manufacturing unit (which may not be packaging machines). For example:

communication between different modules in the unit, communication between a conveyor belt

and a module etc.

State Model:

Defines a standardized state model for packaging machines based on the PackML state model.

Represents different states of the packaging machine, such as Idle, Starting, Execute, Stopping,

and Aborting.

Information Model:

Describes the structure and semantics of data related to packaging machines.

Includes information about production data, equipment status, and other relevant parameters.

Hierarchical organization for clear representation and understanding of the machine's

components and their relationships.

Methods:

Specifies standardized methods for controlling and interacting with the packaging machine.

Methods include commands for starting, stopping, resetting, and aborting the machine, among

others.

Event Model:

Defines events and alarms related to the packaging machine's operation.

5 https://reference.opcfoundation.org/PackML/v101/docs/

https://reference.opcfoundation.org/PackML/v101/docs/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

46

Provides a standardized way to notify systems about changes in state, errors, or other significant

occurrences.

Data Types:

Specifies data types that represent common concepts in packaging machinery, ensuring

consistency in data exchange.

OPC UA PackML Information Model:

Production Data:

Includes information about production counts, speeds, and other performance metrics.

Equipment Status:

Describes the current status of the packaging machine, such as running, stopped, or in an error

state.

Material Status:

Covers information related to materials used in the packaging process, including availability and

consumption.

Job Data:

Provides details about the current job being executed by the packaging machine, including job

ID, description, and progress.

Performance Metrics:

Encompasses data related to the efficiency and effectiveness of the packaging machine, such as

OEE (Overall Equipment Effectiveness) parameters.

By incorporating the OPC UA PackML Companion Specification and its detailed Information

Model, packaging machines can communicate seamlessly with other devices and systems,

enabling better coordination and control within industrial automation environments.

3.3.4 OPC 40100-1: Machine Vision - Control, Configuration Management, Recipe

Management, Result Management

A machine vision system is any computer system, smart camera, vision sensor or even any other

component that has the capability to record and process digital images or videostreams for the

shop floor or other industrial markets, typically with the aim of extracting information from this

data. Digital images or video streams represent data in a general sense, comprising multiple

spatial dimensions (e.g., 1D scanner lines, 2D camera images, 3D point clouds, image sequences,

etc.) acquired by any kind of imaging technique (e.g., visible light, infrared, ultraviolet, x-ray,

radar, ultrasonic, virtual imaging etc.). With respect to a specific machine vision task, the output

of a machine vision system can be raw or pre-processed images or any image-based

measurements, inspection results, process control data, robot guidance data, etc. Machine

vision therefore covers a very broad range of systems as well as of applications.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

47

The OPC UA Machine Vision companion specification 67 supports these broad range of

applications mentioned above. It provides an information model to define the data structures

to support these applications of a machine vision system. The description covers all aspects

relevant for operation.

Interaction of the client with the vision system

A vision system usually has the role of an OPC UA server, i.e. its states are exposed via an OPC

UA server. This is what in this specification is described and defined. The client system can

control the vision system via OPC UA. The vision system may also be controlled by a different

entity through a different interface. The vision system reports important events – such as

evaluation results and error states – automatically to a subscribed client. However, the client

can query data from the vision system at any time.

State Machine

The state machine model is an abstraction of a machine vision system, which maps the possible

operational states of the machine vision system to a state model with a fixed number of states.

Each interaction of the client system with the vision system depends on the current state of the

model and the state and capabilities of the underlying vision system. State changes are initiated

by method calls from the client system or triggered by internal or external events. They may also

be triggered by a secondary interface. Each state change is communicated to the client system.

Recipe Management

The properties, procedures and parameters that describe a machine vision task for the vision

system are stored in a recipe. Usually there are multiple usable recipes on a vision system. This

specification provides methods for activating, loading, and saving recipes. Recipes are handled

as binary objects. The interpretation of a recipe is not part of this specification. For a detailed

description of Recipe Management, please refer to B.1. Result Transfer The image processing

results are transmitted to the client system asynchronously. This transmission includes

information on product assignment, times, and statuses. The detailed data format of a result is

not included in this specification.

Error Management

There is an interface for error notification and interactive error management.

3.3.5 Domain Models for Smart Traffic

We have adopted the following ontologies to define a customized domain-specific semantic

model for real-time traffic management in Use Case 2. The ontology diagrams together with the

object naming scheme are presented in D5.1 [8.

• The components defined by the ASAM OpenDRIVE standard [9] (not an ontology) can be

used in our use-cases to describe the road network as a composition of interconnected

individual sections. Elements include road-segments, lanes, junctions, and features such

6 https://reference.opcfoundation.org/MachineVision/v100/docs/
7 https://opcfoundation.org/markets-collaboration/machine-vision/
8 SmartEdge - D5.1 Design of Low-code Programming tools for edge intelligence.docx

9 https://www.asam.net/standards/detail/opendrive/

https://reference.opcfoundation.org/MachineVision/v100/docs/
https://opcfoundation.org/markets-collaboration/machine-vision/
https://cnitit.sharepoint.com/:w:/r/sites/smart-edge/Documenti%20condivisi/General/WP5/D5.1%20Design%20of%20low-code%20programming%20tools%20for%20edge%20intelligence/SmartEdge%20-%20D5.1%20Design%20of%20Low-code%20Programming%20tools%20for%20edge%20intelligence.docx?d=w5988f13ca1c24515827550df5a64f2f0&csf=1&web=1&e=dkatil&nav=eyJoIjoiOTMwMjQ2MzI0In0
https://www.asam.net/standards/detail/opendrive/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

48

as signals. In addition to the linked road segments, the lanes between roads are also

connected which can be used in simulated traffic.

• At the same time, ASAM OpenXOntology [10] and ASAM OpenLABEL are being developed

in parallel to define ontologies for road network and traffic, and to define taxonomies

for labelling of the network elements.

• In addition, H. Qiu et al have proposed a non-standard but well-researched ontology

highly relevant to UC-2, called “Ontology-based digital map integration“ [11￼]

• Finally, to include our traffic sensors and edge devices in the model, SOSA [12] and SSN

[13] OWL ontology standards (by W3C) can be used to describe sensors, sensing,

measurement capabilities of sensors, the sensing observations results, and sensor

deployments. SOSA is the result of rethinking SSN.

3.4 STANDARDIZED SEMANTIC INTERFACES
In this section we review few standards and open-source implementations, which will be used

in the implementation of Standardized Semantic Interfaces, implementing the functional

requirement CSI-002.

3.4.1 OPC UA

OPC Unified Architecture (OPC UA) is a set of standards14 designed as an interoperability in

Industrial Automation. OPC UA includes a platform independent service-oriented architecture

and a cross-platform standard for data exchange from sensors to cloud applications (IEC 62541).

It is developed by the OPC Foundation. It ranges from field devices up to cloud-based

infrastructure, regardless of diverse hardware platforms and operating Systems.

While there are numerous communication solutions available, OPC UA has key advantages:

security model, multiple fault-tolerant communication protocols, and an information modelling

framework (semantics) that allows application developers to represent their data in an object-

oriented way.

OPC UA has a broad scope which aims to offer economies of scale for application developers.

This means that a larger number of high-quality applications at a reasonable cost is available.

For example, when combined with semantic models such as Asset Administration Shell, OPC UA

makes it easier for end users to access data via generic commercial applications.

OPC UA defines a protocol to exchange the data in accordance with the proposed architecture.

The standard addresses a lot of aspects such as platform independence, communication

patterns, security, extensibility, and so on.

OPC UA standardizes a set of comprehensive information models. OPC UA information models

(companion specifications) are organized with a layered approach, so that each layer provides

10 https://www.asam.net/standards/asam-openxontology

11 https://www.semantic-web-journal.net/content/ontology-based-digital-map-integration

12 https://www.w3.org/2015/spatial/wiki/SOSA_Ontology

13 https://www.w3.org/2005/Incubator/ssn/wiki/SSN

https://www.w3.org/2005/Incubator/ssn/ssnx/ssn

14 https://reference.opcfoundation.org/

https://www.asam.net/standards/asam-openxontology/
https://www.semantic-web-journal.net/content/ontology-based-digital-map-integration
https://www.w3.org/2015/spatial/wiki/SOSA_Ontology
https://www.w3.org/2005/Incubator/ssn/wiki/SSN;
https://www.w3.org/2005/Incubator/ssn/wiki/SSN;
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn;
https://reference.opcfoundation.org/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

49

additional information, ranging from basic OPC UA concepts up to domain-specific information,

even vendor-specific information, and so forth. It is not a single model, but rather an information

stack that defines how the data is looked up, read, and written, and further, how methods are

executed, notifications on data and events are handled, and so forth. Companion specifications

exist for various domains such as, for example, for robotics, product packaging, computer vision,

machine tools, and many more.

3.4.2 W3C WoT

Digital Twins are software abstractions for the IoT. W3C has released the standard called Web

of Things (WoT), which enables interoperability across IoT platforms and application domains.

The standard provides the concept of Digital Twin for things connected to the Web. It includes

the following specifications: WoT Architecture, WoT Thing Description, WoT Discovery, WoT

Security, and WoT Scripting API.

In the scope of this project, we will focus mostly on WoT Thing Description (TD). A TD provides

general metadata of a Thing, as well as metadata about its functions (Interactions), protocol

usage, security mechanisms, links to other Things etc. Thing’s Interactions are specified in a so-

called Interaction Model. The model defines three types of so-called Interaction Affordances:

Property, Action, and Event. They can be manipulated via a RESTful API.

TD Properties can be used for sensing and controlling parameters, such as getting the current

value or setting an operation state. They expose an internal state of a Thing (its data points) that

can be, e.g., directly retrieved via GET method of the HTTP protocol or optionally modified via

HTTP’s PUT method.

TD Actions can model invocation of physical (and hence time-consuming) processes, but can also

be used to abstract RPC-like calls of existing platforms. They are functions that may manipulate

an internal state of the Thing, e.g., to change states that are not exposed via Properties,

modifying multiple Properties, change Properties over time or with a process that should not be

disclosed. HTTP’s POST is the default method for invoking actions on a URI resource.

TD Events provide a mechanism that enables a Thing to asynchronously push messages. They

are used for the push model of communication where notifications, discrete events, or streams

of values are sent asynchronously to the receiver. These messages are not stating but rather

state transitions (events). Events could be triggered by internal state changes that are not

exposed as Properties. Events must follow a consistent delivery approach to ensure that all

occurred events are delivered. To that end subscriptions are utilized with HTTP’s long polling

sub-protocol and enable a sensor to provide a steady feed of data.

A Thing Description is extendable by additional vocabulary terms and ontologies. This

mechanism is important when creating domain-specific TDs. For example, it is possible to use a

domain-specific ontology (see Section 3.3) to enrich a TD with a standardized semantic

vocabulary. A TD must be represented in JSON-LD when additional vocabularies are used.

3.4.3 DDS

The Data Distribution Service (DDS) is an open standard middleware protocol designed for high-

performance, distributed, real-time systems. DDS provides a publish-subscribe model for

sending and receiving data, events, and commands among the nodes of a network. It is

particularly suited for systems where timely and efficient delivery of data is crucial. The protocol

defines a high-level API and data model that abstracts the details of network programming,

allowing developers to focus on the logic of their applications rather than the intricacies of

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

50

network communication. DDS is widely used in industries such as defence, air traffic control,

robotics, and large-scale Internet of Things (IoT) applications, and is a protocol specification

maintained by the Object Management Group (OMG). There are a number of commercial and

open-source implementations including: RTI Connext DDS, eProsima Fast DDS, Eclipse Cyclone

DDS, and OpenDDS.

ROS, which stands for Robot Operating System, is a flexible and collaborative framework for

building complex robotic systems. The original version of ROS used its own publisher-subscriber

message-passing interface for communication between different parts of a robot or between

different robots. The message-passing interface is a type of Message Oriented Middleware

(MOM) that sits on top of the network layers, such as TCP/IP or cross memory services, if running

on the same host. The latest version of ROS, ROS2, replaced its own middleware

communications bus with DDS.

DDS works well on low latency low packet loss networks supporting real-time systems, but can

struggle when operating over low bandwidth or high latency networks, such as WiFi. Here

sometimes unreliable networks are unavoidable, e.g., for mobile robots running ROS 2. In these

circumstances DDS can be paired with a more resilient MOM designed to operate consistently

over these types of networks. In these cases, DDS is used for the local real-time control and

communications, where reliable low latency is required between individual ROS2 nodes, and the

more resilient MOM used for high-level coordination and data transfer communications

between robots, i.e., each robot is a separate DDS fabric interconnected by another resilient

MOM.

3.4.4 Zenoh

Zenoh is a Message Oriented Middleware (MOM) for distributed systems that need to operate

over low bandwidth high latency networks, such as WiFi, and provides features such as

discovery, routing, and data storage. It is designed to be highly extensible and composable,

allowing developers to select the features they need for their application and develop their own

custom MOM extensions. Zenoh is written in Rust, but also has a C implementation called Zenoh

Pico that is designed to run on micro-controllers, such as Arduino.

The Zenoh ROS Bridge forwards ROS system messages to other systems connected to Zenoh. It

is possible for the bridge to subscribe to ROS topics, receive those messages and forward them

to the other systems. The same works in reverse for the ROS system to receive published

messages. Configuring the topics and messages may be a manual process, but the number of

message types that would need to be forwarded over the bridge would be far less that within

the ROS system itself.

It is possible to use Zenoh as a bridge between multiple ROS systems. This might seem to be

counterintuitive, as we could connect them together directly using a ROS bridge, but connecting

two ROS systems can create namespace conflicts. Zenoh handles conflicts by automatically

adding a scope prefixing to topics and messages, which avoids namespace conflicts. It can even

support wildcards for the scope prefix to receive all messages on a topic regardless of the ROS

system that published the message. The Zenoh ROS bridge uses the Cyclone DDS

implementation of DDS, and other DDS implementations may not be supported.

If a Zenoh router is installed in the Zenoh communications fabric, applications can communicate

in several different modes. Routers are typically installed to communicate over more complex

network topologies, the routers forming a backbone for the Zenoh communications fabric. The

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

51

applications can communicate either in client mode where all communication goes through the

Zenoh router, or peer mode where applications communicate peer-to-peer on the local

multicast network but through the router to reach applications on more distant parts of the

fabric.

3.4.5 C-V2X

At its current stage, UC-2 has envisioned several sources of data to monitor and control real-

time traffic at intersections: a) Radars, b) Cameras, c) Traffic Light Controller, d) V2I messages

(measurement data from instrumented vehicles).

Radars send raw data (lacking semantic annotation) to the Sensor Node edge device installed

near each intersection. Sensor Node converts the raw sensing data into JSON string with use-

case-specific semantic annotations. These converted messages can be sent to other smart traffic

nodes via custom MQTT topics. The JSON string messages are also ready to be converted to

SmartEdge common ontology format that is understood by other SmartEdge nodes.

Connected vehicles and the infrastructure (including Sensor Node, Controller Node)

communicate using standard V2X protocols such as SPaT, MAP, BSM, CAM, that do not hold

semantic annotations. These messages are originally in binary format to achieve high

performance in networking and computation. For instance, the V2X roadside units (RSUs) enable

Sensor Nodes and Controller Nodes to receive V2I BSM/CAM messages from the cars moving

near each intersection, providing information about car situations such as accurate geolocations

and speeds. On the other hand, the onboard units (OBU) installed inside connected vehicles

enable them to receive SPaT and MAP messages from a Controller Node to understand road

geometry, rules and suggested driving actions. Similar to the raw radar data, the V2X messages

need to be converted from binary non-semantic format to the semantic format defined in

SmartEdge and presented as JSON and JSON-LD/RDF strings, before they can be used in the

context of UC2. Therefore, converter components need to be implemented as well. The

proprietary V2X OBUs and V2X RSUs considered for the project already come with SDK for

converting the received binary messages into JSON strings. Having this conversion process, it

will be possible for us to compare and combine the V2I messages with the object detection data

from radars and cameras.

Finally, to brief on the V2X standards, the SAE J2735 [15] and ETSI EN 302 637-2 [16] define

standard V2X message types and their data format. SAE’s BSM stands for basic safety message,

where vehicles periodically communicate their state (location, speed, etc.) at 10Hz to support

safety applications such as collision avoidance. Similarly, ETSI’s Cooperative Awareness Message

(CAM) [17] though having a different message format, has the same application as BSM by

communicating vehicle information needed for safety applications. On the other hand, Signal

Phase and Timing (SPaT) messages are sent by the Control Nodes that also control traffic signal

lights. SPaT messages inform the traffic signal phase and timing state to the nearby vehicles. In

addition, Control Nodes can send MAP messages to communicate the road lanes information at

15 https://www.standards.its.dot.gov/Factsheets/Factsheet/71

16 https://www.en-standard.eu/etsi-en-302-637-2-v1-3-0-intelligent-transport-systems-its-

vehicular-communications-basic-set-of-applications-part-2-specification-of-cooperative-

awareness-basic-service/

17 https://forge.etsi.org/rep/ITS/asn1/cam_en302637_2

https://www.standards.its.dot.gov/Factsheets/Factsheet/71
https://www.en-standard.eu/etsi-en-302-637-2-v1-3-0-intelligent-transport-systems-its-vehicular-communications-basic-set-of-applications-part-2-specification-of-cooperative-awareness-basic-service/
https://www.en-standard.eu/etsi-en-302-637-2-v1-3-0-intelligent-transport-systems-its-vehicular-communications-basic-set-of-applications-part-2-specification-of-cooperative-awareness-basic-service/
https://www.en-standard.eu/etsi-en-302-637-2-v1-3-0-intelligent-transport-systems-its-vehicular-communications-basic-set-of-applications-part-2-specification-of-cooperative-awareness-basic-service/
https://forge.etsi.org/rep/ITS/asn1/cam_en302637_2

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

52

each intersection as well as to outline lane geometry as closed polygons. Each lane record can

include lane type, connecting lane, related signal group, and allowed manoeuvres at the stop

line implying traffic rules.

3.4.6 MQTT with SparkPLug B

MQTT18 is an OASIS standard. It is a lightweight, publish/subscribe messaging protocol ideal for

connecting remote devices (e.g., in IIoT applications). MQTT has a small code footprint. This

design allows data to move within a challenging communications environment with resource

constraints or limited network bandwidth. MQTT is widely used for device messaging in IIoT

communications, with millions of devices leveraging its capabilities.

Publish–subscribe19 is a messaging pattern where publishers categorize messages into classes

that are received by subscribers. This is contrasted to the typical messaging pattern model

where publishers send messages directly to subscribers. Similarly, subscribers express interest

in one or more classes and only receive messages that are of interest, without knowledge of

which publishers, if any, there are.

Main characteristics of MQTT are:

• Lightweight - Publish–subscribe architecture is decoupled between a broker and clients.

MQTT clients are very small and can be implemented on small microcontrollers. Brokers

can be implemented on different kinds of machines (on edge or cloud). MQTT message

headers are small to optimize network bandwidth.

• Reliable – Messages are delivered within 3 defined quality of service levels: 0 - at most

once, 1- at least once, 2 - exactly once.

• Bi-directional Communications - MQTT enables messaging between device to cloud and

cloud to device.

• Support for Unreliable Networks - MQTT supports persistent sessions, which reduces

the time to reconnect when an IoT device is connected over unreliable cellular networks.

• Scalability - MQTT can scale to connect with millions of IoT devices.

• Security - MQTT makes it easy to encrypt messages using TLS and authenticate clients

using modern authentication protocols, such as OAuth.

MQTT effectively enables device-to-device communication. However, MQTT messaging

provides zero context about shared data. MQTT is effective in sharing IoT data, but it is less

effective in the management of data, i.e., in managing which data needs to be shared. Mere

provision of topic names with some basic structures of topics is not sufficient in complex IIoT

applications. The payload can be anything and the message can be anywhere. Thus, it is a

challenge to find out what data (exchanged over MQTT) originates from which device, and in

which context this data is to be used.

Sparkplug20 has emerged to extend MQTT for this purpose. It provides the context of industrial

data, which is necessary for IIoT architectures and systems when exchanged via MQTT.

Therefore, Sparkplug is seen as the main building block in MQTT, which extends operational

technology (OT) data with context for seamless integration with information technology (IT).

18 https://mqtt.org/
19 https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
20 https://sparkplug.eclipse.org/

https://mqtt.org/
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://sparkplug.eclipse.org/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

53

Sparkplug is an open-source specification21 hosted at the Eclipse Foundation, which aims in the

future to become an ISO standard.

Sparkplug B introduces the structure for MQTT topics. The structure enables logical grouping of

messages, and thus improves the data management. Payloads are binary messages encoded in

Google Protocol Buffers22. It is also possible to use JSON encoding (for human representation).

User defined data types (UDTs) can be defined via special templates. This is said to be a

mechanism for defining semantic structures that, for example, can be found OPC UA

companions too.

3.5 STANDARDIZED SEMANTIC INTERFACES IN SMARTEDGE
SmartEdge enables seamless integration of SmartEdge devices via standardized semantic

interfaces. Standardized semantic interfaces provide a common way to access the devices' data

from the application level. For the different use-cases covered by the project, there is a need for

seamless communication across diverse protocols, such as OPC UA, MQTT, and DDS. Ensuring

interoperability at the protocol level is essential to make use of these interconnected systems.

To overcome the challenges of multi-protocol device communication and enable

interoperability at the protocol layer, we envision using a middleware solution that unifies the

messages across different protocols as shown in Figure The messages from different protocols

being unified at the middleware layer allow the dataflow vertically and horizontally and, also,

enable a unified access to the data from the application layer.

21 https://www.eclipse.org/tahu/spec/sparkplug_spec.pdf
22 https://protobuf.dev/

https://www.eclipse.org/tahu/spec/sparkplug_spec.pdf
https://protobuf.dev/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

54

Figure 3.16: Standardized Semantic Interfaces in SmartEdge

Middleware is seen as a mediation layer for the devices, which communicate MQTT, DDS, or

middleware-specific protocol. On top, Web of Things Thing Description (WoT TD) will be utilized

as a machine-readable standardized metadata description of the devices, their data and

services. WoT TD provides detailed information about the capabilities, properties, and

interactions that a device offers.

OPC UA-enabled devices make use of information modelling features of OPC UA. SmartEdge

relies on OPC UA Field eXchange (OPC UA FX) specifications, which target field device

interoperability in the industrial automation domain. OPC UA FX provides a common field

component model (information and interfaces) alongside an information exchange model.

In order to achieve the interoperability between the OPC UA-enabled devices and the

middleware, OPC UA FX messages can be mapped to MQTT Sparkplug B specification. With that

the OPC UA-enabled devices will be integrated at the middleware layer to the rest of the system.

For the semantic description of the data, SmartEdge will make use of domain-specific ontologies,

as well as of the OPC UA companion specifications, which define specific data types within the

OPC UA information model. The companion specifications are typically developed for particular

domains, devices, or applications to ensure interoperability and data consistency.

The use case data models, as well as the WoT TDs and OPC UA information model, describing

the devices, will be the basic building blocks for defining devices' capabilities and skills, used to

create the SmartEdge recipes. Generic representation of devices' skills and capabilities will be

fed into the low-code toolchain, where the recipes will be created and executed. Low-code

runtime then executes the recipe by interacting with the middleware.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

55

Table 3.12: Technologies applied in SmartEdge Various Use Cases

UC Communication protocol Serialization format Semantics
1 W3C WoT (different

protocols)
RDF Turtle,
JSON/JSON-LD

(Use-case specific
ontologies)

2 C-V2X/ETSI-G5,
MQTT/NATS

JSON/JSON-LD Smart Traffic Ontology

3 DDS, Zenoh ROS2 Binary, JSON-LD Robotics Ontology

4 OPC UA XML OPC UA FX and OPC UA
companion specifications

5 BLE, DDS, MQTT JSON Healthcare Ontology

Table 3.12 summarizes various technologies used at different levels in SmartEdge use cases.

In Use Case 1, W3C WoT and Web RTC will be employed at the communication protocol level.

Serialization will be done using RDF Turtle and JSON/JSON-LD. Despite the absence of a specific

information model for semantics, messages between vehicles are expected to convey the

intention of vehicles and their states, defined in a domain-specific ontology.

For Use Case 2, the term Smart Traffic Node refers to any of UC2 smart nodes such as Connected

Vehicle, Sensor Node, or Controller Node. C-V2X and/or ETSI-G5 communication protocols are

utilized for V2V and V2I communication among the vehicles and the fixed infrastructure nodes,

while NATS publish/subscribe handles data collection and service API communication. UC2 uses

NATS only internally, while a “NATS to MQTT interface” handles compatibility with SmartEdge

middleware so that Smart Traffic Nodes can fully communicate to the middleware via MQTT

standard. Radar detection of vehicles will be serialized in a vendor-specific binary format, while

V2X message types will use standard binary formats like SPAT, CAM, CPM, MAP. Sensor Node

and Controller Node convert binary V2X and radar messages into semantic formats so that the

data from these nodes can be serialized in JSON/JSON-LD.

Use Case 3 will employ DDS for intra-robot communications and Zenoh as middleware for inter-

robot and edge device communications. ROS2 will use a binary format for communication over

DDS directly between DDS nodes. Whilst there is no official ROS2 message format, several

hundred of the most common messages are available online 23. Messages flowing between

robots and edge devices over the Zenoh are SmartEdge or application specific messages and are

formatted in JSON-LD. With that, each node specifies the message types it supports, but there

is no formal ontology specification. The control and coordination messages passed over Zenoh

between robots and other edge devices as either SmartEdge messages or application specific

messages.

In Use Case 4, OPC UA will serve as the communication protocol for machine-to-machine

communication, with OPC UA FX enabling interoperability between components and describing

devices' capabilities. Additional domain specific OPC UA companion specifications will be utilized

to describe the data at the semantic level.

For Use Case 5, BLE, DDS, or MQTT will be used for communication. Data will be serialized in

JSON and possibly in OMG IDL binary format. The healthcare ontology will be employed for

semantics. Messages will follow a generic configuration with specific sub-models/templates

23 https://github.com/ros2/common_interfaces

https://github.com/ros2/common_interfaces

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

56

based on the situation (e.g., discovery, registration, negotiation, data-streaming). The UC5

knowledge graph will provide details on dynamics and data representation.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

57

4 DATAOPS TOOL FOR SEMANTIC MANAGEMENT OF THINGS AND

EMBEDDED AI APPS

This chapter reports the design of the SmartEdge DataOps toolbox supporting the continuous

integration of things and applications through the standardized semantic interfaces discussed in

Chapter 3. The objective of the DataOps toolbox is to provide a set of technologies to perform

data integration from different sources with a specific focus on performance and scalability

requirements for both cloud and edge environments. Moreover, in line with the objectives of

the SmartEdge solution the design of the DataOps toolbox focuses on low-code approaches to

facilitate the configuration and reusability across different use cases.

The content of the chapter is structured as follows:

• Section 4.1 discusses the relevant requirements for the design of the DataOps toolbox

considering inputs from SmartEdge deliverable D2.1;

• Section 4.2 provides an overview of the relevant state-of-the-art focusing on data

interoperability solutions enabled by a declarative and low-code approach;

• Section 4.3 describes the proposed design for the DataOps toolbox in terms of

components identified and relevant technologies for its implementation in SmartEdge

according to the defined requirements;

• Section 4.3 outlines a preliminary analysis on how the designed DataOps toolbox can

support the SmartEdge use cases.

4.1 REQUIREMENTS FOR THE DATAOPS TOOLBOX
This section discusses the requirements for the DataOps Toolbox considering the ones identified

in D2.1 for the Continuous Semantic Integration solution and the analysis of the SmartEdge use

cases. The requirements, reported in Section 2, are associated with a need for enabling data

interoperability among different nodes composing a swarm.

4.1.1 Data Interoperability

The issue of data interoperability is a significant concern when operating within a multi-

stakeholder ecosystem comprising diverse actors [Sadeghi20]. Similarly, within a swarm there is

a need for data interoperability among diverse nodes that employ heterogeneous data formats,

specifications, and semantics. The ability to exchange data without any loss of meaning among

communicating parties is an essential objective, but it is notoriously challenging to achieve also

due to:

• heterogeneous information systems that communicate using different protocols and by

exposing different interfaces (cf. requirements from D2.1 HP-001, HP-005, HP-006, HP-

007, HP-008, HP-009, HP-011, HP-014, LC-009, CSI-001).

• heterogeneous data formats with varying semantic interpretations employed by

multiple actors/nodes in the same domain (cf. requirements from D2.1 LC-015, CSI-002,

CSI-008, CSI-013, CSI-014). This phenomenon may arise due to several factors that make

the establishment of standards difficult, for example, the persistence of legacy

applications or the usage of proprietary data formats.

While a message conversion process can offer a valid solution to define transformations across

data formats, the integration of such processes considering different data sources and sinks is

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

58

something that requires a case-by-case analysis and cannot be solved by a single solution. As an

example, to achieve interoperability between a Device A that outputs JSON data and a second

Device B that consumes CSV data it is not enough to be able to convert a JSON payload into a

CSV payload. Device A may only be capable of transmitting data using a Remote Procedure Call

protocol while Device B may only be capable of receiving data through a HTTP API.

To achieve data interoperability, we thus need to address two main challenges reflecting the

first two interoperability layers in the European Interoperability Framework (EIF) Toolbox24:

• heterogeneous interface integration to guarantee technical interoperability (i.e., the

possibility of a data exchange between two systems) through standardized interfaces,

and

• payload conversion to guarantee semantic interoperability (i.e., ensure that the target

node can understand the message received and act appropriately) through

standardized semantics.

The DataOps toolbox has the objective of enabling data interoperability between

heterogeneous structured data sources by leveraging the standardized semantic interfaces

discussed in Section 3.

To identify more specific requirements for the DataOps tool, we analyse the types of data

exchanges that can be implemented within a SmartEdge swarm between different types of

nodes as discussed in deliverable D2.1. Figure 4.1 provides a diagram representing the different

cases identified.

Figure 4.1: Types of data exchanges within a swarm

The simplest case is related to SmartEdge-based data exchanges between smart-nodes, i.e.,

nodes that execute a SmartEdge-enabled component. In this case, the nodes are directly capable

of processing and exchanging the data according to the standardized semantic interfaces

defined by SmartEdge. The communications between the coordinator/orchestrator of the

swarm and a smart-node can be an example of SmartEdge-based data exchanges.

As a second case, we can identify native data exchanges between different types of nodes, i.e.,

also considering brownfield devices. In this case, we assume that two nodes in the swarm are

24 https://joinup.ec.europa.eu/collection/nifo-national-interoperability-framework-observatory/solution/eif-

toolbox/6-interoperability-layers

https://joinup.ec.europa.eu/collection/nifo-national-interoperability-framework-observatory/solution/eif-toolbox/6-interoperability-layers
https://joinup.ec.europa.eu/collection/nifo-national-interoperability-framework-observatory/solution/eif-toolbox/6-interoperability-layers

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

59

already capable of exchanging data according to common interfaces and semantics and their

communication should only be configured. As an example, we can consider a set of cameras

emitting video-streams and a smart-node capable of processing such streams. In this case, once

the data exchanges between the cameras in a certain swarm and the smart-node are configured

(e.g., by providing IP addresses of the cameras to the smart-node), then the data are exchanged

by the nodes at runtime without requiring any intermediary component. A native data exchange

may also exist between nodes that are already integrated to offer certain functionalities in a

swarm, e.g., different ROS nodes or an in-cloud backend processing binary messages from IoT

devices.

The third case, i.e., the mediated data exchange represents the target of the DataOps toolbox

and should be enabled for the continuous semantic integration of the nodes involved. In this

case, two nodes exchange data according to different interfaces and semantics and their

communication should be enabled by SmartEdge. As an example, we can consider the exchange

of data from a brownfield device that is not directly supported by a smart-node. For example,

Node A may deliver messages using MQTT and a custom payload format while the Smart-Node

1 may have as interface a HTTP API accepting JSON payloads according to a specific schema. In

this case, the DataOps toolbox should enable both technical and semantic interoperability to

enable the data exchange among the two nodes.

It is important to highlight that the same pair of nodes may require different types of data

exchanges, e.g., the Smart-Node 2 may be capable of exchanging information related to swarm

coordination with the Smart-Node 1 through a SmartEdge-based data exchange, while requiring

a mediated data exchange for exchanging structured information received from a brownfield

device (Node B).

To generalise, the DataOps toolbox should provide a set of technologies for the implementation

of mediated data exchanges in different scenarios. The associated requirements are:

• the retrieval of data from heterogeneous data sources with different interfaces (e.g.,

protocols and interaction mechanisms),

• the conversion of payloads from one data format and/or data model to another one,

• the forwarding of the converted data to the target interface.

In this context, it is important to clarify the distinction between the processing of structured and

unstructured information. The processing of unstructured information to extract structured

data, e.g., the processing of a video stream by a machine-learning algorithm for object detection

and identification, is out of scope of the DataOps toolbox and can be considered as an

application executed by a certain node that interacts with the unstructured data stream (e.g.,

the video stream) and generates structured information (e.g., a JSON message describing the

list of objects detected in the video). Considering the provided example, the DataOps toolbox

can instead support the processing of the structured data generated by the node to guarantee

data interoperability (e.g., convert the JSON message adopting a common vocabulary for the

objects detected). For this reason, the fulfilment of requirements CSI-013 and CSI-014 will be

supported by the DataOps toolbox, if structured data exchanges should be mediated, and/or by

the solutions developed within WP5.

4.1.2 Performance and Scalability

For the definition of more non-functional requirements, it is important to consider the following

categorization that can be applied to the described data exchanges:

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

60

• Static data exchange: exchange of pre-defined datasets with low volatility such as

metadata (e.g., self-descriptions) and configurations for a node.

• Runtime or on-the-fly data exchange: exchange of messages and/or data streams at

runtime between nodes.

The two data exchanges are associated with different characteristics and, consequently,

different needs in terms of performance and scalability [Scrocca21]. On one hand, static data

exchanges often require the conversion of datasets of larger size with low frequency, thus

requiring the minimisation of resource usage and scalability in terms of the size of the input. On

the other hand, runtime data exchanges are usually associated with small-size messages with

high frequency, thus requiring the minimisation of the latency introduced by the conversion

process and scalability in terms of concurrent conversion requests.

The KPIs 2.2 and 2.3 reported in Section 2 target the expected improvements in terms of

performance and scalability to be demonstrated in SmartEdge considering the baseline results

discussed by Scrocca et al. in [Scrocca21] terms of conversion time (140 ms conversion time with

50 KBytes XML payloads) and number of concurrent requests handled per second (100

requests/s with 50 KBytes XML payload on commodity hardware and considering a single

converter instance).

Finally, in the context of SmartEdge an additional constraint is introduced by the types of nodes

involved in the considered use cases. The resources available for each node, mainly CPUs and

RAM, should be taken into account for certain edge devices with minimum specifications.

4.1.3 Deployment

The term continuous, associated with the semantic integration process, embraces two aspects

that will be supported by the DataOps toolbox: (i) the discussed enablement of data

interoperability among nodes with different integration requirements, and (ii) the possibility for

the data interoperability solution to support deployments either in the cloud or on the edge.

Indeed, to facilitate a seamless integration between the edge and the cloud, the DataOps

toolbox should support different deployment possibilities considering different types of devices

(e.g., hardware and operating system) as well as cloud environments such as container

orchestrators (cf. requirement from D2.1 HP-018). To facilitate reusability and portability of data

interoperability solutions developed through the SmartEdge DataOps toolbox, the definition of

the solution should be as much as possible decoupled from the necessary configuration for its

deployment. Ideally, it should be possible to reuse with minimal effort the same solution in

different deployment environments with minimum modifications required.

4.1.4 Low-code

The design of the DataOps toolbox should also aim at investigating low-code approaches to

facilitate the configuration of mediated data exchanges by minimising the amount of code to be

written and increasing the reusability of already defined solutions (cf. requirement from D2.1

LC-010).

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

61

4.2 STATE OF THE ART

This section provides an overview of the relevant state-of-the-art considered for the design of

the DataOps toolbox. In particular, we focus on approaches exploiting declarative mappings to

enable semantic interoperability, and frameworks for data integration that could be used to

implement solutions for technical interoperability.

4.2.1 Semantic Interoperability through Declarative Mappings

Considering different nodes with a semantic harmonisation need, a naïve approach consists in

the implementation of a point-to-point solution to enable a direct payload conversion between

each pair of nodes adopting a different data standard (any-to-any approach). However, this

approach is not scalable and the amount of mappings to be defined increases as 2n(n − 1) with

n being the number of different standards to be considered. When integrating different

software systems that act in the same domain, or more generally share a common set of

concepts and vocabulary, it is possible to employ a more effective any-to-one centralized

mapping approach [Vetere05]. This approach reduces the number of mappings required for data

interoperability enabling a better scalability of the solution. If there are n different formats, the

number of mappings increases instead as 2n as shown in Figure 4.2. The assumption behind this

approach is that it is possible to identify a reference conceptual model O, that models the

common semantics of the data standards considered. Each data standard should be only

mapped to and from the reference conceptual model. Using an ontology as a reference

conceptual model, we can offer a valid solution to model the common semantics, as we do in

SmartEdge, and has the additional advantage of enabling the creation of an interoperable

knowledge graph during the conversion process between two standards [Scrocca20]. The

advantages and challenges of such an approach in the context of the Web of Things is also

discussed in a position paper by Bennara et al. [Bennara20].

Figure 4.2: Comparison of the any-to-any and any-to-one approaches for interoperability.

Each of the arrows represented in Figure 4.2 is associated with the definition of a set of rules,

usually called mapping rules, that enable the conversion of payloads from one data standard to

another one.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

62

The payload conversion can be implemented in different ways. From a literature review

[VanAssche22] the following categorization emerges:

• Hard-coded procedures: the data conversion process is defined through code in a

specific programming language. In this case, data conversion may take place via one-

off scripts or by hard-coding specific conversion rules, known ahead of time, inside of

another program. An example is a custom Python script that parses a specific JSON

stream and generates an associated set of RDF triples. The problem with this approach

is that the data conversion solution becomes difficult to maintain and difficult to reuse.

• Format-specific mappings: the data conversion process is defined by leveraging a well-

defined mapping language to define conversion rules from a specific data format to a

target one. An example is the TARQL25 tool for converting CSV files to RDF, using an

extension of the SPARQL language to define the mapping rules, or the R2RML W3C

recommendation [Das12] for the mapping from relational dabatases to RDF. The

downside of format-specific mappings is that they are optimized for a specific data

format. Converting to and from a variety of formats would require using and

maintaining a set of different tools, one for each format.

• Declarative mappings: overcome the shortcomings of the previously presented

approaches by being implemented in a declarative mapping language. Mapping rules

are decoupled from the mapping executor and different processors may be used to

execute the mappings if they conform to the same adopted declarative mapping

language. Additionally, they are not constrained to a specific data format but can

convert data to and from various formats. A single solution for the definition and

execution of the mappings should be learned and maintained.

Considering an ontology as a reference conceptual model, different declarative mapping

languages for the conversion of heterogeneous data sources to RDF have been proposed

[VanAssche22]. These declarative mapping languages can be classified as:

• dedicated languages based on R2RML [Das12] syntax (RML [Dimou14], D2RML

[Chortaras18], KR2RML [Slepicka15], R2RML-F [Debruyne16], xR2RML [Michel15]),

• dedicated languages with custom syntax (Helio Mapping Language [Cimmino22], D-

REPR [Vu19]),

• repurposed languages based on constraint languages (ShExML [García-González18]),

extending the ShEx syntax),

• repurposed languages base on SPARQL 26 syntax: XSPARQL[Akhtar08], Facade-X,

SPARQL-Generate[Lefrançois16].

Each mapping language provides at least one mapping processor able to execute the specific

mappings.

The most widely used of these declarative mapping languages is the RDF Mapping Language

(RML)27. RML extends R2RML, by adding support for heterogeneous data sources, such as files

in the CSV, XML or JSON formats.

RML works by defining:

25 https://tarql.github.io/
26 https://www.w3.org/TR/sparql11-overview/
27 https://rml.io/specs/rml/

https://tarql.github.io/
https://www.w3.org/TR/sparql11-overview/
https://rml.io/specs/rml/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

63

• Logical sources can be considered as the input of the mapping process. They can

reference relational databases or files in one of the supported formats. Depending on

the type of file, they define how to access data inside of the file in different ways. For

example, a logical source for a JSON file specifies how it accesses data with the

JSONPath28 language, while for an XML logical source XPath29 is used.

• Subject maps which specify how the subject for an RDF triple is to be constructed from

the source data. This may be either a constant or an expression that depends on the

input source data.

• Predicate-Object maps are functions that create a predicate-object association for each

item from a logical source. These predicate-object links are used in conjunction with

the subjects generated from subject maps to compose a whole subject-predicate-object

RDF triple.

In addition to these core concepts RML allows users to declare logical functions [Meester17] and

join conditions. Logical functions are declared in RDF by defining their inputs and outputs. Their

implementation depends on the RML processor that runs the mapping, but they should follow

the contract of the logical function to assure predictable behaviour. Join conditions are instead

necessary when the output of the mapping process depends on multiple input logical sources.

The join conditions are used like in conventional relational database systems to link together

data from different sources.

Figure 4.3 illustrates the transformation process of an input CSV file into the output RDF
format through the application of an RML mapping. The depicted RML mapping constructs
subjects for the RDF triples using a subject map that extracts information from the "id" column
in the CSV file. As indicated in the subject map, each subject is defined to be of type (utilizing

28 https://goessner.net/articles/JsonPath/
29 https://www.w3.org/TR/xpath-3/

Figure 4.3: Example of an RML mapping from CSV to RDF

https://goessner.net/articles/JsonPath/
https://www.w3.org/TR/xpath-3/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

64

the rdf:type predicate) transit:Stop. Since there is only one row in the input CSV considered, a
singular subject is derived. For each subject, the RML mapping defines three predicate-object
maps. The first of these maps is used to convey information about the transit route to which
the stop belongs. This is done by linking the previously obtained subject with the predicate
transit:route to the object obtained from the input csv under the column “stop”. Furthermore,
the same is done for geographic coordinates of the stop using the wgs84_pos:lat and
wgs84_pos:long predicates and getting the corresponding values (“latitude” and “longitude”)
from the CSV file.

RML is structured to be more machine-readable than human-readable. To increase its usability,

YARRRML30 was introduced. YARRRML is a syntax based on YAML and it offers a more user-

friendly way to create RML mappings. It acts as an intermediary step, allowing users to define

mappings in a human readable YAML syntax, which then generates the corresponding RML

mappings, making the process more accessible.

In Figure 4.4 we compare the same mapping rules defined using the YARRRML language (on the

left) and then translated to RML (on the right). We can see that YARRRML is significantly less

verbose than the RML language. This increased conciseness without loss of expressiveness

simplifies the maintenance of mappings and as such is generally preferred.

Figure 4.4: Example of a YARRRML file (left) and corresponding RML mapping (right)

Recently, the W3C Knowledge Graph Construction community group collected different experts

to discuss the further development of RML and propose it as a W3C recommendation. As a

result, a new specification based on a modular ontology has been released [Iglesias-Molina23].

RML is a stable solution with widespread adoption and many supported mapping processors

exist but can only be used for mappings generating RDF triples as an output. While many

solutions exist for the conversion via declarative mappings to RDF, the same is not true for the

conversion from RDF to a target data standard [Grassi23]. A more generic approach to define

mapping rules is that of using a template-based declarative approach. This is the case for the

mapping-template component [Grassi23] which defines mappings using the Apache Velocity

30 https://rml.io/yarrrml/

https://rml.io/yarrrml/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

65

Template31 language (VTL). Just like RML, this tool can retrieve input data from various common

formats like CSV, XML, JSON, and RDF. It employs specific query languages for each format— for

instance, SPARQL for RDF and JsonPath for JSON files. These queries retrieve data from input

files and organize it into tabular structures known as data frames that are then used to generate

the required output. The benefit of employing a template-based language is the flexibility it

offers. Users are not restricted to a single output type but can potentially represent any plain

text structure. On the downside, the syntax used to define the mappings is bound to the Velocity

Template Language (VTL) and a single mapping processor is currently available32.

Figure 4.5 shows how an RML mapping can be written using the mapping-template component

approach. Like in RML, data is extracted from the input XML file shown in Figure 4-6. In the

mapping-template case, a single query written with XQuery33 is defined to access the input once

while, in RML multiple XPath queries are defined. The mapping-template approach differs from

RML by explicitly saving the extracted data in a support data frame data structure that facilitates

the implementation of custom optimisation for accessing and reading the data to be converted.

The direct key-based access to values in the data frame provided by VTL is then used to write

the expected output, i.e., the RDF triples. This output is shown in Figure 4.6.

31 https://velocity.apache.org/
32 https://github.com/cefriel/mapping-template
33 https://www.w3.org/TR/xquery-31/

Figure 4.5: An RML mapping (left) and the same mapping expressed in the VTL template language (right)

https://velocity.apache.org/
https://github.com/cefriel/mapping-template
https://www.w3.org/TR/xquery-31/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

66

4.2.2 Technical interoperability through Data Integration Tools

The issue of data integration is ubiquitous and frequent. Therefore, several tools and

frameworks to address it are available both as open-source or as commercial solutions. Most

commonly, tools follow the Extract-Transform-Load (ETL) approach to data integration where

the process is defined by three main steps: data is gathered from various sources (Extract),

transformed or modified to fit the desired target or system (Transform), and finally loaded into

a database, data warehouse, or another destination (Load). Examples of such systems include

Talend34, Apache Fink35 or Apache Kafka36.

However, the integration of heterogeneous systems does not require only ETL processes. Other

functionalities, such as data filtering, merging or routing, are usually involved. The main

categorisation of the components and techniques that can be used in an integration process is

defined by the Enterprise Integration Patterns [Hohpe04]. An example framework that is built

with these patterns at its core is Apache Camel. Camel is an open-source, configurable and

extensible Java integration framework to facilitate the integration with various systems

consuming or producing data.

 ETL tools can be used to implement the any-to-one mapping approach discussed and provide

interoperability among different systems. ETL tools usually support low-code approaches to

configure data integration solutions using dedicated declarative languages (e.g., a Domain

Specific Language) and/or graphical interfaces.

To support data integration leveraging a global conceptual model in the form of an ontology,

the ETL tools should have support for technologies from the Semantic Web field. UnifiedViews

[Knap14] and LinkedPipes [Klímek16] have been implemented during the years, providing

environments fully based on Semantic Web principles to feed and curate RDF knowledge bases.

A different approach is used by Talend4SW37, whose aim is to complement an already existing

tool (Talend) with the components required to interact with RDF data. The Chimera framework

[Grassi23] provides additional components for the Apache Camel framework to implement data

transformation pipelines through Semantic Web technologies.

34 https://www.talend.com/
35 https://flink.apache.org/
36 https://kafka.apache.org/
37 http://fbelleau.github.io/talend4sw/

Figure 4.6: Input XML file and output RDF (Turtle) file for the mappings in Figure 4.5. Note that both mappings

produce the same output.

https://www.talend.com/
https://flink.apache.org/
https://kafka.apache.org/
http://fbelleau.github.io/talend4sw/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

67

4.3 DESIGN OF THE DATAOPS TOOLBOX

The implementation of mediated data exchanges within a swarm will be supported by the

DataOps toolbox designed to facilitate the development of low-code solutions for data

interoperability.

In this section, we specify the components identified for the DataOps toolbox and the

technologies that will be leveraged for the implementation of such components according to

the requirements discussed in Section 4.1.

4.3.1 Components of the DataOps Toolbox

The challenge of data interoperability cannot be universally defined for all scenarios, and as

such, there cannot exist a single solution. The DataOps toolbox should provide a flexible and

extensible set of components that is adaptable to the requirements of integrating

heterogeneous information systems. For this reason, the main design principle that we follow is

related to the modularity of the solution. The DataOps toolbox is designed as a set of

composable modules that can be appropriately configured and combined within a pipeline to

address heterogeneous integration requirements.

4.3.1.1 DataOps Pipelines

To tackle the discussed challenges, starting from the state-of-the-art analysis, we define a set of

conceptual steps that are required for the definition of pipelines via the DataOps toolbox.

We consider a mapping scenario where data from a data source, represented according to an

input data format and data model (Standard A), should be converted to an output data format

and output data model (Standard B) and stored in a data sink. The mapping scenario may involve

the integration of additional data sources for the generation of the output, and data

transformations to be applied during the process.

The adoption of an any-to-one mapping approach with a reference ontology as global

conceptual model represents a solution for the core transformation required by the presented

mapping scenario. Such transformation should be supported by a semantic conversion process.

Such process, shown in Figure 4.7, can be represented as a two-step approach:

• Lifting step: the information contained in the input data is extracted according to the

reference ontology;

• Lowering step: the information is accessed relying on the reference ontology and used

to build the output message.

As suggested in the literature [VanAssche22], the semantic conversion process should rely on

declarative mapping languages to foster the maintainability and scalability of the solution.

Mapping rules should be provided as a separate input to the lifting and lowering steps and a

mapping processor should be able to interpret and execute the mappings.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

68

Figure 4.7: Semantic conversion process

Leveraging the standardised semantics identified by SmartEdge, i.e., a (set of) reference

ontology(ies) encoding the common semantics for each use case, it is possible to implement

semantic conversion processes to support semantic interoperability among different nodes

within a swarm.

However, to implement the mapping scenario discussed, a DataOps pipeline also requires the

capabilities to obtain the data from the input data source and forward the output to the target

data source. We define the DataOps pipelines as the composition of different components

supporting a mediated data exchange between two nodes in the swarm. A minimum and generic

pipeline is shown in Figure 4.8 and is composed by: (i) an input node data connector configured

to access the source node, (ii) a mapping processor configured with lifting mappings, (ii) a

mapping processor configured with lowering mappings, (iv) an output node data connector

configured to forward the data the target node. Moreover, a DataOps pipeline can be enriched

with additional processing blocks to fulfil integration requirements, e.g., interact with an

external system to enrich the input data or forward the same input message to multiple

recipients.

Figure 4.8: High-level representation of a DataOps pipeline

In some cases, the lowering step may not be needed, for example, a SmartEdge smart-node

capable of processing RDF data (e.g., processing JSON-LD Web of Things descriptions) may only

need the execution of lifting mappings. Similarly, data exchanges meant to enrich the knowledge

graph in a SmartEdge swarm only need a lifting procedure to generate RDF triples.

The composition of DataOps pipelines for a specific mediated data exchange should be

supported by a declarative approach allowing for the selection and configuration of the required

components. The same DataOps pipeline should support different deployment options to

address specific constraints.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

69

In the following sections, we specify better the main blocks of a DataOps pipeline, i.e., node data

connectors and mapping processors. In particular, we expand and analyse the aspects that

should be possible to declaratively specify via a mapping language and the corresponding

functionalities that should be supported by the components of the Data Ops pipeline.

4.3.1.2 Node Data Connectors

A node data connector component should provide data access from sources and data forwarding

to sinks considering the different types of nodes enabling the SmartEdge use cases. Figure 4.9

provides an overview of how a declarative mapping language can support its configuration and

what are the functionalities that it should implement.

Figure 4.9: Node data connectors overview

Node data connectors should support a Data Source Specification that declaratively defines how

to access (Data Source Access) and retrieve (Reading Strategy) the data to be processed by the

subsequent blocks in a DataOps pipeline. Different configurations may be needed according to

the data source considered, for example considering if it is local or remote, if it is a dataset or a

data service. The Data Source Access should indicate the location (e.g., URL) to access the data

source, the protocol to access the resource, and the security mechanisms restricting the access.

The Reading Strategy should indicate the type of interaction expected by the data source, e.g.,

push versus pull mechanism, synchronous versus asynchronous, batch versus stream. Different

Node Data Connector(s) support different types of data source(s) and the expected interaction

in reading data from them, e.g., a Node Data Connector may support reading data from data

sources adopting a specific protocol.

Similarly, a Node Data Connector is needed also to support the writing of data to a target data

sink. When writing data, a Data Sink Specification declaratively defines how to connect (Data

Sink Access) and send (Writing Strategy) the data obtained as a result of the mapping process.

Finally, the result of the mapping process may be split considering different data sinks. The

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

70

implementation of this functionality requires the selection or implementation of Node Data

Connector(s) supporting the target data source and the expected interaction in writing data.

4.3.1.3 Mapping Processors

A mapping processor should support the execution of mapping rules defined according to a

declarative mapping language. Mapping processors are decoupled from the mapping languages

supported and may implement different approaches for the performant and scalable execution

of the mapping rules. Starting from an analysis of mapping processors for RDF Knowledge Graph

Construction available in the literature, we define the functionalities that characterise a

declarative mapping language and a corresponding mapping processor (shown in Figure 4.10).

Figure 4.10: Overview of a mapping processor

Mapping processors should be able to access data and internally store them to support the

application of data transformation operations according to the considered mapping rules. To

decouple the parsing and extraction of data from heterogeneous data sources from the

execution of mapping rules, intermediate data structures are usually adopted. Such data

structures can be generalised considering the concept of data frame, i.e., a two-dimensional

data structure made of rows and columns.

The parsing and extraction of data is declaratively defined by a Data Frame Definition that

specifies: (i) the Input Data Format (CSV, XML, etc.) and the corresponding Reference

Formulation (e.g., SQL, XQuery, etc.) to parse and extract data needed in the data frame and (ii)

a proper Flattening Strategy for the definition and extraction of a data frame also in the case of

hierarchical data sources, e.g., JSON or XML.

The Data Frame Extraction functionality should be implemented by a mapping processor relying

on the Data Frame Definition specified. The implementation of this functionality requires the

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

71

selection of a Data Parser responsible for parsing data received from the data source according

to their specific format (e.g., CSV/XML/JSON), and a Query Engine capable of extracting the data

frame from the parsed data and according to the Flattening Strategy. The Data Parser and Query

Engine are usually implemented by the same component. This component can be a SQL query

engine in the case of a relational database, a SPARQL query engine in the case of RDF data, or a

more generic library extracting a data frame from a JSON object.

The required data transformations are specified declaratively via rules that can be interpreted

by the mapping processor as operations applied to the data frames (Data Frame Manipulation)

to (i) combine multiple data frames, or (ii) transform the values contained in a data frame. The

capability of applying these transformations is referred to as the Data Frame Processing

functionality. The implementation of this functionality requires the selection of two

components: a Data Frame Combiner capable of executing the combination of one or more data

frames according to the mapping rules specified, and a Transformation Executor capable of

applying the data transformation (e.g., a function to modify as lowercase the values in a certain

column).

Finally, the required schema transformations rules are defined by declarative mapping rules that

specify how the data in the data frame should be combined to obtain a valid target output. The

execution of such rules (Mapping Execution) is implemented by three components: a Rules

Planner evaluating the dependencies among different mapping rules to schedule their possibly

concurrent execution, a Rules Engine actually executing the rules, and a Data Formatter,

validating and formatting the generated output.

Performance and scalability requirements can be met by either selecting a more performant

mapping processor for the specific use case or by optimising the mappings (e.g., considering the

amount of data frames extracted).

4.3.2 Technologies for the DataOps Toolbox

This section discusses how the requirements defined in Section 4.1 can be addressed by the

designed DataOps toolbox. A scouting of available technologies was performed and we present

the outcomes that will guide the implementation of the DataOps toolbox in SmartEdge.

4.3.2.1 Data Interoperability through Chimera

For the implementation of DataOps pipelines, we propose the usage and potential extension of

the Chimera38 framework. Chimera [Grassi23] is an open-source solution based on Apache

Camel and enables the definition of semantic data transformation pipelines by composing

different components for dealing with knowledge graphs. By leveraging the Apache Camel

framework, we can employ already existing production-ready solutions to address issues

associated with the integration of heterogeneous nodes (i.e., technical interoperability).

Moreover, the Chimera components can provide the necessary functionalities for implementing

a semantic conversion process. Indeed, Chimera can support the implementation of both node

data connectors and mapping processors as outlined in previous sections.

Apache Camel is a robust and stable open-source project that supports out-of-the-box several

components, runtimes and formats to access and integrate a large set of existing systems and

38 https://github.com/cefriel/chimera

https://github.com/cefriel/chimera

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

72

environments. Such components can provide the necessary functionalities to implement node

data connectors in SmartEdge. We report here a preliminary list of components that may

support the requirements of the SmartEdge use cases (e.g., communication protocols):

• the File Component to read and write to files on the local filesystem;

• the HTTP Component to access or invoke external http resources;

• the Camel Paho MQTT 5 Component39 for MQTT;

• the Camel NATS Component40 for NATS;

• the OPC-UA Component41 for the OPC-UA protocol.

Apache Camel relies on the basic concept of Route defining a certain logic to load, extract,

integrate, transform, and output data. Each Route is a pipeline composed of a set of components

that are applied in a specific sequence to a certain Exchange, i.e., an entity going through a

Route. The Exchange is identified by an identifier, and it can be thought of as an envelope. It

contains the messages (e.g., the data being processed) but also a set of properties that can be

used to carry an additional state during the Route execution. The components specified within

the Route play a role in manipulating the data contained in the Exchange. These components

provide a range of capabilities. For instance, the File Component can be employed to generate,

duplicate, or remove files. These functions and their settings are configured through a

component's Uniform Resource Identifier (URI). A URI is a string representation that guides the

component in performing operations, abstracting the need for users to interact with the

underlying code. By exposing the capabilities of a component through a URI string, users do not

need to know the underlying code for a component but can simply choose which functionalities

to use. Additionally, the decoupling between the configuration of a Route and the code simplifies

the introduction of changes to the logic of a pipeline.

Figure 4.11 shows a minimal snippet of an Apache Camel pipeline, defined using the Java DSL,

that transfers data from a folder to another one.

Figure 4.11: A Java DSL Camel route example that transfers files from the 'inputdir' to the 'outputdir' using the file

component's URI arguments.

As shown in Figure 4.12, Chimera provides a set of additional components that can be combined

within an Apache Camel pipeline. Chimera introduces the support for several operations on

knowledge graphs by leveraging the abstractions and functionalities offered by the RDF4J42

library. The RDF Graph in Chimera pipelines is an abstraction that can refer to a local knowledge

graph (in-memory, filesystem), or a remote graph stored in a triplestore or accessible through a

SPARQL endpoint.

39 https://camel.apache.org/components/4.0.x/paho-mqtt5-component.html
40 https://camel.apache.org/components/4.0.x/nats-component.html
41 https://camel.apache.org/components/3.21.x/milo-client-component.html
42 https://rdf4j.org/

https://camel.apache.org/components/4.0.x/paho-mqtt5-component.html
https://camel.apache.org/components/4.0.x/nats-component.html
https://camel.apache.org/components/3.21.x/milo-client-component.html
https://rdf4j.org/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

73

It is important to highlight that additional components can be developed if specific requirements

arise and they can be then re-used in different Apache Camel pipelines.

Figure 4.12: The Chimera framework provides a set of Apache Camel components that can be combined in

integrated pipelines

Figure 4.13 provides an overview of the functionalities offered by the Chimera components for

knowledge graph construction (lifting), transformation (enrichment via RDF graph merge and

SPARQL CONSTRUCT, inference), validation (SHACL43 shapes), and exploitation (lowering).

Figure 4.13: Overview of the functionalities implemented by Chimera

Considering the semantic conversion process, Chimera currently offers two mapping processors

implementing the state-of-the-art approaches discussed in Section 4.2. It handles the RML

declarative mapping language via a dedicated component that can support the implementation

of the lifting step, and the template-based approach powered by Apache Velocity that supports

the implementation of both lifting and lowering.

In SmartEdge, the configuration of DataOps pipeline can leverage the abstractions introduced

by Apache Camel and should be supported via:

• the selection of appropriate Camel components that can serve as node data connectors;

• the implementation of appropriate mapping rules using a declarative mapping language

and considering the mediated data exchanges needed by each SmartEdge use case;

• the selection of an appropriate mapping processor supported by Chimera to execute the

mappings;

• the identification of additional components required to implement the pipeline.

43 https://www.w3.org/TR/shacl/

https://www.w3.org/TR/shacl/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

74

This process may lead to the implementation of additional Apache Camel components (e.g.,

node data connectors for protocols currently not supported) and/or Chimera components (e.g.,

integration of additional mapping processors or adaptation of the existing ones to support

performance and scalability requirements). Finally, we plan to work on Chimera to increase the

overall TRL of the solution.

4.3.2.2 Performance and Scalability of Mapping Processors

Mapping processors are software components responsible for executing data and schema

transformations defined by a declarative mapping language. For this reason, they have a great

impact on the overall performance and scalability of a DataOps pipeline. In SmartEdge we will

focus on the optimization of the semantic conversion process starting from the literature and

the available mapping processors.

In this section, we mainly discuss a dedicated set of mapping processors tailored for the RML

language. Indeed, given the broader adoption of RML, many solutions have been developed for

this language proposing different approaches and optimisations for the mapping process.

There are various mapping processors available for the RML language, one is RMLMapper 44, a

Java based RML processor maintained as the reference implementation of the mapping

language by the same group that developed RML language. CARML45 is an alternative mapping

processor implemented in Java focusing on streaming and (potentially) non-blocking processing

of mappings. CARML also defines a set of extensions to the RML language to better support

stream data sources, XML namespaces and functions for data transformation. SDM-

RDFizer46[Iglesias20] is a Python based project which utilizes streamlined data structures and

relational algebra operators to efficiently execute RML triple maps through a multi-thread safe

procedure for each set of RML rules. Another Python based project is morph-kgc47[Arenas-

Guerrero22] that is based on the popular Python pandas 48 library. Morph-kgc improves

performance by introducing the concept of mapping partitions. These partitions are composed

of sets of mapping rules that generate distinct subsets of the resulting knowledge graph. By

processing each group independently, this approach reduces the overall memory consumption

and execution time needed for the conversion process. Finally, RocketRML 49 provides a

JavaScript mapping processor for RML.

The performance and scalability of different mapping processors is evaluated in the literature

([Scrocca21] [Arenas-Guerrero21] [Arenas-Guerrero22]) but the best solution usually depends

on the specific scenario considered, e.g., on different parameters characterising the mapping

rules [Chaves-Fraga19]. Several benchmarks exist for evaluation, such as the GTFS Madrid

Benchmark [Chaves-Fraga20], however, these are usually targeting the scalability of large-size

datasets. To the best of our knowledge, no benchmarking is currently focusing on the

performance and scalability of the mapping process over more dynamic scenarios with multiple

concurrent requests and low-latency requirements.

44 https://github.com/RMLio/rmlmapper-java
45 https://github.com/carml/carml
46 https://github.com/SDM-TIB/SDM-RDFizer
47 https://github.com/morph-kgc/morph-kgc
48 https://pandas.pydata.org/
49 https://github.com/semantifyit/RocketRML

https://github.com/RMLio/rmlmapper-java
https://github.com/carml/carml
https://github.com/SDM-TIB/SDM-RDFizer
https://github.com/morph-kgc/morph-kgc
https://pandas.pydata.org/
https://github.com/semantifyit/RocketRML

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

75

As these mapping processors are specific to the RML mapping language their usage is limited to

situations where the desired output is RDF. The mapping-template50 tool is a Java based solution

implementing a more generic mapping approach based on the Apache VTL template language

and discussed in Section 4.2.1. The performance of the mapping-template is evaluated in the

literature only for the lowering phase [Scrocca21]. An evaluation considering the lifting phase

and the benchmarks usually applied to an RML processor could be useful for a comparison with

other existing solutions. In this direction, we will also evaluate the possibility of enabling a direct

translation of RML mappings to template-based mappings executables through the mapping-

template component.

Considering constrained devices with limited resources (e.g., CPU/RAM), simpler approaches

like programmatic string replacement are often adopted for efficient transformation of data to

RDF [Naiema23]. However, these approaches do not offer the advantages of declarative

mappings and are difficult to scale and maintain. Within SmartEdge, considering the devices

involved in the use cases, we will assess and work on optimisations for the performance and

scalability of mapping processors based on declarative mapping languages.

4.3.2.3 Deployment strategies for Apache Camel

 One of the most prominent advantages of leveraging Apache Camel is its inherent support for

multiple deployment options, which could support flexibility in the deployment of DataOps

pipelines. The versatility of Apache Camel's deployment capabilities significantly aligns with the

diverse needs of SmartEdge, particularly in scenarios where the software component

responsible for mediating message formats and semantics may operate across various

environments. In the context of the SmartEdge project, this flexibility allows the DataOps

pipelines to be executed on Edge devices, more powerful devices or in the Cloud. This

adaptability ensures that the definition of a DataOps pipeline is decoupled from its deployment

strategy. In this way, the deployment strategy can be tailored to suit the specific demands of

different deployment environments specified by the different use cases.

Apache Camel supports different deployment alternatives:

1. JAR files that are self-contained executable for devices that can run a Java runtime. This

approach can cover a higher number of use cases, but it may not be suitable for all edge

devices. In particular, those positioned on the lower end of the spectrum in terms of

processing power and resources may not be able to run a Java Virtual Machine (JVM).

2. Native Executables using Camel Quarkus, an Apache project that integrates Camel with

Quarkus. Quarkus51 is a Java framework tailored for producing native applications. This

allows Java projects to be packaged as lightweight, fast-booting native binaries by

employing an ahead-of-time (AOT) compilation approach. Examples of native

executables are ELF binaries for Linux and exe files for Windows. This deployment option

can be used for those Edge devices that do not or cannot run Java.

3. Kamelets using Apache Camel K, a subproject of Camel tailored for simplified

deployment of Camel Routes on Kubernetes52. Camel K simplifies the process of running

Camel-based integrations on Kubernetes by allowing developers to create and execute

integrations using Camel DSL as native Kubernetes resources. This facilitates the

50 https://github.com/cefriel/mapping-template
51 https://quarkus.io
52 https://kubernetes.io

https://github.com/cefriel/mapping-template
https://quarkus.io/
https://kubernetes.io/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

76

seamless integration of Camel's extensive library of components and patterns into the

Kubernetes environment, enabling efficient and scalable deployment of integration

solutions within cloud-native architectures. Camel K introduces the concept of

Kamelets, which are abstractions of Camel routes represented as route snippets. These

Kamelets define and reveal the interface inputs and outputs. In contrast to Camel,

where the Component is the unit of abstraction, in Camel K, the Kamelet encapsulates

an entire Route. These Kamelets are executable on Kubernetes clusters where they can

be used for serverless data integrations.

Figure 4.14 summarises the deployment options described. The Java JAR file can be obtained as

a standalone application using Camel Main53 or Camel SpringBoot54. Both the Java JAR file and

the Native Quarkus executable can be packaged using an appropriate OCI container55 and,

optionally, deployed using a container orchestrator such as Kubernetes. Kamelets are meant for

Camel K and should be natively run on a Kubernetes cluster.

Table 4.1 outlines the advantages and potential issues associated with the different deployment

options described.

53 https://camel.apache.org/components/4.0.x/others/main.html
54 https://camel.apache.org/camel-spring-boot/4.0.x/spring-boot.html
55 https://opencontainers.org

Figure 4.14: Deployment options for an Apache Camel route.

https://camel.apache.org/components/4.0.x/others/main.html
https://camel.apache.org/camel-spring-boot/4.0.x/spring-boot.html
https://opencontainers.org/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

77

Table 4.1: Analysis of PROs and CONs for different deployment options

Deployment Pros Cons

JAR file

Easy to build.

Easy to deploy to a device,
everything necessary is contained in

the JAR.

Requires the device to run Java.

Native
Executable

Does not require the device to run
Java.

Faster start-up and execution times

than a JAR file.

Creating a native binary demands
more CPU power and RAM

compared to building a JAR file.
While not problematic for one-time
route building and deployment, it's

essential to consider this when
dynamically creating routes.

Not all the Java libraries support

Quarkus.

Kamelet

Allows an even easier re-use of
routes inside of a larger integration.

Serverless approach enables scale-

to-zero to save resources, and
scalability via replication for high

traffic loads.

Only makes sense in the context of a
Kubernetes deployment.

4.3.2.4 Low-code approaches to define DataOps pipelines

A low-code approach simplifies application development by emphasizing configuration over

manual coding. The overall objective is to enable a declarative configuration of components so

that users can reduce the need for implementing custom solutions.

For the Apache Camel framework, data integration pipelines are defined using the abstraction

of Routes rather than direct coding. This abstraction empowers a no-code approach to data

integration, as it exposes all available functionalities of Camel components through well-

documented URI parameters, which users can configure when creating a route. This approach

also means that modifying the data integration pipeline doesn't necessitate rebuilding the entire

software artifact that executes Camel routes, it only requires changes to the file where the route

is declared.

Routes can be defined using several domain-specific languages (DSL), with the most prominent

options being Java, XML, Spring XML, and YAML. Alternatively, routes can be built using a

graphical user interface without writing code using Apache Camel Karavan56 and the plugin for

Visual Studio Code. This graphical approach significantly eases the process of route definition,

as it avoids syntax and logical errors that may happen when manually writing a route in a text

file.

56 https://github.com/apache/camel-karavan

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

78

Figure 4.15 shows an example Camel pipeline defined using the graphical user interface

provided by Apache Camel Karavan. On the left, the corresponding YAML generated by the tool

is displayed.

The adoption of Apache Camel for the DataOps toolbox enables a low-code approach for the

configuration of pipelines as composition of proper building blocks. We will evaluate the

possibility of adding support for Chimera components within Apache Camel Karavan to enable

also a graphical definition of DataOps pipelines.

Figure 4.15: An example of a route in YAML (left) and the same route created visually with Apache Karavan (right).

4.4 DATAOPS TOOLBOX IN SMARTEDGE

This section discusses how the designed DataOps toolbox can support the different SmartEdge

use cases. We identify potential data exchanges that would require a mediation, i.e., a

conversion from a structured heterogeneous format (e.g., CSV/XML/JSON) to the standardised

semantic interfaces defined in Section 3 or vice versa. Moreover, we provide an initial

description of deployment options that the DataOps toolbox should support for its integration

considering the architectural constraints of each use case.

4.4.1 Mediated Data Exchanges in SmartEdge

The configuration of different pipelines through the DataOps toolbox will be needed in

SmartEdge to support mediated data exchanges. The implementation of such pipelines can be

enabled by ensuring the availability for each use case of a set of components:

• Node data connectors: requirements for each use case about the data sources to be

accessed (both as data providers and as data consumers). Different connectors should

be identified or implemented to support heterogeneous protocols and interaction

mechanisms (e.g., pull/push).

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

79

• Mapping rules: requirements for each use case about the data formats and data models

adopted and the target standardised semantics. Mapping rules should be declaratively

defined to support the conversion of payloads between each pair of input/target data

format/model.

• Mapping processors: requirements for each use case about the mapping processors

considering constraints on performance/scalability and/or about the runtime

environment for the execution.

The identification and/or implementation of such components is based on the definition of

which mediated data exchanges are necessary in SmartEdge.

Figure 4.16 provides an overview of the data models/formats identified within SmartEdge

considering each use case and the standardized semantic interfaces discussed in Section 3. The

arrows represent the requirements identified at this stage of the project for the conversion of

data from one data model/format to another. The red arrows identify the conversions that can

be possibly supported by the DataOps toolbox.

Figure 4.16: DataOps toolbox in SmartEdge

The figure does not consider data models associated with native data exchanges that are

supported by default. For example, considering the SmartEdge Use Case 2 (UC2) we excluded

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

80

from the analysis the following native data exchanges toward the Traffic Sensor Node fixed at

the road infrastructure:

• Camera/Radar/Lidar to Sensor Node

• Connected Vehicle to/from Sensor Node

• Controller Node to Connected Vehicle

• Controller Node to Traffic Light

• Sensor Node to Controller Node: Sensor measurement data sourced from

radars/cameras are converted into UC-specific JSON by the Sensor Node before sending

out to other nodes

At the bottom of the figure, we represent a set of devices and related data models/formats

identified as swarm nodes by the different use case:

• Industrial PLC communicating through OPC UA (Use case 4);

• IoT Devices and Smart Traffic Nodes exchanging messages through custom MQTT

topics/payload (Use case 1, Use case 2, Use case 3, Use case 4, Use case 5A/5B);

• Autonomous Mobile Robot (AMR) exchanging binary messages through DDS (Use case

3).

Finally, we represented a SmartNode that identifies a node in the swarm implemented by

SmartEdge and thus directly able to communicate according to the standardized semantic

interfaces defined by the project.

The interoperability among different protocols can be enabled as discussed in Section 3.4 thus

reducing the amount of data models/formats to be considered:

• Messages exchanged using a set of topics in the SmartEdge middleware (format defined

by the middleware selected for the SmartEdge architecture, semantics possibly

customly defined for each topic);

• OPC UA data exchanges standardised through the OPC UA FX and other companion

specifications.

The possibility of defining a single standardised interface through the SmartEdge middleware

also for OPC UA data exchanges will be evaluated. In this case, the DataOps toolbox may support

the conversion from OPC UA FX to an intermediate representation adopting MQTT and

Sparkplug B.

The description of each node, i.e., what are the interactions available for each node and how

they can be invoked, should be harmonised according to the definition of skills and capabilities

in the SmartEdge Schema. In this context, the DataOps toolbox may support the conversion from

OPC UA FX descriptions or from WoT Thing Description to the SmartEdge Schema.

Considering application messages, the DataOps toolbox can be employed for the conversion of

custom payloads received via the SmartEdge middleware to the standardised semantics (e.g.,

Robotic ontology, Smart Traffic ontology, Health ontology) defined for SmartEdge.

For example, within the SmartEdge UC2 the payload generated by the Sensor Node is a JSON

string in a structured use-case-specific format. The data format aims primarily at seamless

programming, network bandwidth and computation performance, therefore does not

necessarily abide by standard ontology schemas. The JSON string in Figure 4.17 is an example

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

81

of sensing data denoting current states of a bunch of vehicles moving near intersection

“fi.helsinki.270” in Helsinki.

Such messages are passed among our nodes via the MQTT pub/sub mechanism and may be

made available to other nodes via the SmartEdge middleware. The above Sensor Node JSON

strings need to be lifted into semantic JSON-LD/RDF strings, matching with the defined

standardised domain-specific ontology, i.e., the Smart Traffic Ontology.

Considering the runtime interactions for the execution of a recipe and/or the assignment of

roles, tasks, and instructions to certain nodes, it may be necessary to map messages to the

SmartEdge Schema or Recipe Model in RDF. Also in this context, the DataOps toolbox may

support such conversion. Moreover, it may be necessary to map certain information between

the RDF representation according to the Recipe Model and the structured data format (e.g.,

JSON) fulfilling the requirements of the Mendix tool.

Finally, certain swarm control messages will be directly provided by the SmartEdge network

layer for scenarios associated with dynamic swarm formation and management. The adoption

of the DataOps toolbox to support the conversion of such messages (e.g., from Swarm Network

Tables) to the SmartEdge Schema may be evaluated.

4.4.2 Deployment of DataOps pipelines in SmartEdge

Considering the SmartEdge use cases, different constraints may emerge for the deployment of

the DataOps toolbox. For this reason, we identify different options that should be potentially

supported for the integration of the DataOps toolbox components within the swarm:

• Within a dedicated smart-node: a dedicated component for the mediation of data

exchanges is deployed and is considered as an additional node in the swarm providing

data interoperability capabilities.

Figure 4.17: Example JSON string from Use Case 2

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

82

• Embedded in the source/target smart-node: the component for the mediation of data

exchanges is deployed as part of either the source or the target smart-node and can be

integrated or as a library, if the source code of the runtime of the smart-node is

compatible, or as an external component invoked by the smart-node for each message

to be sent/received. In this case, it is preferable to deploy multiple components for each

smart-node requiring a mediated data exchange.

• Embedded in the swarm orchestrator: the component is deployed as part of the swarm

orchestrator and can implement mediated data exchanges for different nodes involved

in the swarm and communicating through the orchestrator.

• Embedded in the middleware/network layer: the component is deployed as part of the

middleware/network layer and can implement mediated data exchanges for different

nodes involved in the swarm, possibly even in a transparent way (i.e., without explicit

interaction by the nodes).

Such choice may be dependent on specific constraints of each use case, for example, it may be

guided by the availability of more performant nodes to reduce the latency or by specific

constraints for the deployment/integration of the DataOps toolbox in certain nodes (e.g.,

licensing or constraints on software installation). For each option, further requirements may be

elicited depending on the hardware/software involved.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

83

5 CREATION AND ORCHESTRATION OF SWARM INTELLIGENCE APPS

The chapter provides the current work on design and implementation of an orchestrator for

Swarm apps in the SmartEdge environment. These apps will be instantiated from existing

templates, targeted to match the existing devices, which would integrate the swarm. The

description of the devices and their capabilities would be specified using the declarative and

semantic models proposed in Task 3.1. Moreover, these capabilities would be matched with the

specification of the templates, thus enabling the orchestration of the app, and initiating the

interactions among the swarm devices. The templates themselves will be specified using

semantic descriptors, and the data flows will be enacted using the DataOps infrastructure

provided in Task 3.2 and instantiated using the Mendix framework.

The contributions of Task 3.3 are:

Recipe Model implementation in Mendix

• SmartEdge Swarm Orchestrator in Mendix

5.1 STATE OF THE ART – ORCHESTRATION OF SWARM EDGE APPS

With the wide availability of IoT/WoT edge devices for sensing and actuation, it becomes

increasingly important to facilitate the orchestration and deployment of these systems. Given

the complexity of the configuration of edge platforms, including the setup of device

interconnections, integration of inputs/outputs, definition of tasks to be performed, fallback

scenarios, etc. [Abbas17].

5.1.1 Cloud/Edge Deployment

In many cases the deployment of edge intelligence solutions requires heavy involvement of

technical experts that must manually prepare and configure the participating devices. This

makes it challenging to introduce changes in the device organisation, replace nodes, or modify

the tasks to be performed. In the domain of cloud computing, the deployment of production

systems is automatised using frameworks like Kubernetes 57 [Al Jawarneh19], which decouples

the execution runtime of the individual nodes from the orchestration of the entire cluster.

Containerised services in this type of environments allow high flexibility as it allows for

programmable interfaces that developers can use for monitoring, node synchronisation, event

management, scaling, failure handling, etc. However, platforms like Kubernetes are better fitted

for data centres, which work in very different conditions with respect to edge devices in IoT.

Among these we can mention the network reliability, or the dynamicity of incoming data from

devices that can abruptly join or quit the system [Alberti13].

In the SmartEdge project, some of the edge nodes are considered to have self-organising

capabilities, enabling the formation of Swarms of devices. In this context, making use of

intelligence capabilities at the node level is essential for orchestration and deployment. In order

to adapt Kubernetes to edge environments, different lightweight frameworks exist, such as

K3s58, Microk8s, KubeEdge [Xiong18], or Kubelets [Goethals20], which are designed to adapt and

perform better in scenarios where edge devices and sensor nodes are in charge of the

57 https://kubernetes.io/
58 https://k3s.io/

https://kubernetes.io/
https://k3s.io/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

84

application execution. Other approaches exploit geo-graphical relationships among nodes, like

Oakestra [Bartolomeo20] or OneEdge [Saurez21], which optimises scheduling of edge devices,

beyond the Kubernetes-based solutions. Other efforts in this line include CloudPath

[Mortazavi17], HeteroEdge [Zhang19] or SpanEdge [Sajjad16], more focused on specific aspects

such as streaming data applications. Other approaches more related to Fog Computing include

open-source project FogLamp 59, while network-specific works like VirtualEdge [Nguyen16] are

centred on edge nodes for cellular networks.

5.1.2 Semantic IoT Platforms and WoT APIs

Semantics provide the ability to create abstractions that capture the essential capabilities, goals,

roles, and tasks performed by edge and IoT nodes [Thuluva20]. The advantage of using such

descriptions is that they provide the means to abstract the actual implementation or device

specific functions from the description of the task(s) that the devices must execute. This enables

discoverability of devices, as well as enhanced flexibility, so that different nodes (e.g., from

different vendors) could fulfil a given task if they comply with the description of the device

capabilities. Moreover, the semantic description of IoT devices may allow orchestrators and

coordinator nodes to look for, or replace execution nodes when needed, using the semantic

metadata as a catalogue, or directory.

At a development level, these semantic descriptions can be created, accessed, or modified

through an API. In the BIG IoT platform, for example, a generic API is used as a bridge between

existing platforms, delegating interoperability to the semantic model. Other APIs, such as the

one provided in the meSchup IoT platform [Kubitza17], have a deeper control over the devices

in the system, although with less flexibility regarding device interoperability. Beyond these APIs,

other attempts have been made to bridge applications and IoT devices, such as the Semantic

Gateway Service [Desai15], or the Semantic Information Broker, which incorporates the notion

of discovery in IoT environments, implemented as “smart spaces” [Viola16].

In the realm of semantic integration and orchestration, there has been a considerable amount

of work regarding Semantic Web Services [Calbimonte20]. This concept includes the publication

of services following the Web standards, including semantic annotations and ontologies that

enable their automatic discovery, composition, interconnection, and invocation. The

composition of Semantic Web Services requires languages that formally describe inputs and

outputs and indicates the way in which services can be integrated. While the Web Service

Description Language (WSDL) 60 has been used to address the syntactic aspects of service

description and consumption, for the semantics it was needed to extend the language, for

example through approaches like OWL-S, WSMO, or SAWSDL.

Following the evolution of Web Service APIs towards a design based on the REST principles,

beyond the limitations of SOAP/WSDL, alternatives such as RESTdesc, hRESTs, WSMO-light, or

MicroWSMO emerged, offering different levels of service description for Web APIs [Lucky16].

However, most of these solutions are oriented towards back-end services and need to be

adapted to WoT environments. Application integration solutions at the application level, such

as IFTTT or Node-RED61 have been used in previous works, especially for composing complex

59 https://dianomic.com/platform/foglamp/

60 https://www.w3.org/TR/sawsdl/
61 https://nodered.org/

https://dianomic.com/platform/foglamp/
https://www.w3.org/TR/sawsdl/
https://nodered.org/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

85

workflows in IoT environments, using individual services as building blocks. These concepts of

pipelining components can offer a powerful and flexible architecture for loose coupled WoT

services. In combination with semantically rich models (i.e., based on RDF vocabularies),

descriptions of WoT processes can serve as the basis for a seamless orchestration of

autonomous edge nodes. Nevertheless, to this point there is no solution yet that allows this type

of orchestration in swarms of IoT edge devices, using templates that provide semantic

descriptions of swarm goals, tasks, and background knowledge.

5.1.3 Semantic Descriptions of Devices for Orchestration

Orchestration of edge devices requires having a common representation of their main

characteristics, expressed as capabilities, roles, tasks, etc. The usage of semantic models to

enable orchestration has been a key element in previous works. Different ontologies have been

proposed to tackle this issue, most notably the SSN (Semantic Sensor Network) ontology, and

its successor, the SOSA ontology [Janowicz19]. These models are not meant to be used on their

own, but in combination with other vocabularies, e.g., QUDT for expressing quantities, or

domain-specific ontologies. Examples of these ontologies include Smart Applications REFerence

(SAREF)62, targeting smart appliances, brick for building management, etc.

Specifically for the Web of Things domain, the W3C Web of Things Thing Description 1.1

Recommendation (TD)63 is a semantic model designed to serve as an entry point of a Thing. The

TD is composed of mainly the following elements: metadata descriptions of the Thing,

affordances that specify properties, events, and actions possible with the Thing, as well as the

data schema, security mechanism information, and links to related Web resources. For the

orchestration of Things, the TD affordances provide essential information regarding the ways in

which other nodes can use/interact with it. First, the orchestration service can identify the

Things that offer capabilities needed by the tasks specified in a Swarm recipe, or template. The

TD specification also includes the concept of a Thing Model, a logical description of the potential

interactions with a “class” of things. A Thing Model can include the properties, actions, and

events exposed by a type of Thing, although it does not contain individual information about an

instance of the Thing (e.g., concrete address, serial number, or other specific data).

5.2 DESIGN OF THE SWARM ORCHESTRATION
One of the goals of SmartEdge is to provide low-code tools for configuring and orchestrating

Apps that manage and run on a Swarm of edge devices. To achieve this, in WP3 we envision the

usage of tools that allow users to visually construct the application with drag-and-drop

functionalities, and intuitive interfaces.

5.2.1 Design-time Orchestration Tooling

In order to enable the configuration and creation of recipes, it is needed to use low-code tools

that allow designing the flow and components of the Swarm App, as well as its inputs and

outputs. In this section we describe the characteristics of the Mendix 64 framework that will

precisely be used and extended for this purpose.

62 https://saref.etsi.org/
63 https://www.w3.org/TR/wot-thing-description11/
64 https://www.mendix.com/

https://saref.etsi.org/
https://www.mendix.com/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

86

The Mendix framework and ecosystem allows IT teams and App developers to accelerate the

creation and entire lifecycle of digital solutions including the following features:

• Rapid development of applications: It allows visual development of complex

applications, as well as provides support for automated deployment out of the box.

• Extensibility: The Mendix platform is extensible, with the possibility of reusing

components, adding widgets, connecting to different data sources, and customizing

behaviours through APIs and code snippets.

• Cloud capabilities: Containerisation of Mendix apps is provided by default, enabling both

cloud and local installations easily as addressed in functional requirements LC-006, LC-

007 and LC-008 in Table 2.2.

• Marketplace: A large number of reusable components are available, including widgets,

modules, etc. which are provided by the Mendix community.

• Security privacy: Security and governance features are available by default in Mendix,

enabling trusted use of its components.

With these considerations at hand, the Mendix platform provides an interesting starting point

for enabling the orchestration of SmartEdge Apps using a low-code approach. The two main

components of Mendix relative to the orchestration are the Mendix Studio, and the Mendix

Runtime.

Mendix Studio Pro (currently in version 10.x) is a visual model-driven IDE with customizable

themes, drag-and-drop functionality, reusable components, and full-stack capabilities. This is

shown in Figure 5.1 and Figure 5.2. The orchestration in SmartEdge will be configured at design

time using this tool, which permits organizing the different data sources (e.g., coming from edge

nodes), establishing a flow of tasks and computations that need to be performed, and the nodes

that are involved.

Figure 5.1: Mendix Studio environment for designing the App UI.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

87

However, the current Mendix functionalities do not allow for the usage of ontologies to

represent nodes in the system. Although there are different connectors available in the Mendix

marketplace (e.g., Bluetooth) for certain types of devices, there is not really a concept of a group

of nodes, and even less the concept of a Swarm of nodes. As we will see later, these are

functionalities that will be incorporated as part of the SmartEdge WP3 developments.

5.2.2 Low-code Runtime Execution Tooling

Once the design of the App and its components has been prepared, the actual execution is taken

in charge by the Mendix runtime component. The Mendix Runtime is essentially an interpreter

of a Mendix model, enacting input data ingestion, executing microflows & nanoflows, displaying

data results in App pages, etc. The Medix Runtime can be decomposed in two parts, the Mendix

Runtime Server and The Mendix Client.

Mendix Runtime Server: It is the part of the Mendix Runtime that is in charge of executing

microflows, as well as connecting to different data sources and external services. The Runtime

server communicates answering requests to Mendix Clients. The Runtime Server can be

deployed on the cloud or locally, e.g., for testing. The requests from the clients are processed

and data is returned as a result, following the Mendix model that describes the microflows and

the application logic. The Runtime Server follows a stateless service pattern, allowing horizontal

scaling.

Mendix Client: It is the runtime component that runs on the devices of the end-users, acting as

an interface with the domain-specific Application. The Client is decoupled from the Runtime

Server, and thus can execute certain processing flows locally, only requesting the server when

necessary. Mendix-based applications can be deployed as Mobile or Web, Mendix Client runs

on both cases. In the case of Web applications, the Mendix Client is launched in JavaScript on a

single dynamic HTML page. In the case of a Mobile App, the Mendix Client is installed as a React

Native65 application.

Figure 5.2: Mendix Studio environment design mode.

5.2.3 Swarm Apps Application Logic Design

As explained in Section 3, the SmartEdge Swarm Apps will be configured using the so-called

recipes, which are templates or blueprints that specify the goals of a Swarm, and the processes

that are needed to accomplish them. In the use cases where Mendix is used as visual

65 https://reactnative.dev/

https://reactnative.dev/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

88

development tool, and as engine for the orchestration of the SmartEdge App, the application

logic has to be specified using the concepts of microflows and nanoflows. These flows allow

performing different types of activities, including branching logic, updates on data, or displaying

content, all in a declarative way.

In the case of microflows (Figure 5.3) these run on the Mendix Runtime Server, and thus can

access cloud services, external data sources, etc. but cannot run offline. In contrast, nanoflows

run directly on the device (or browser for Web apps), therefore being able to be executed offline

and autonomously. Depending on App restrictions and autonomy requirements and

performance, a combination of microflows and nanoflows can be used in the Studio designer.

Figure 5.3: Microflow hierarchy in the Mendix model.

The notation of both nanoflows and microflows is based on BPMN (Business Process Model and

Notation) [Recker06], which is a well-known standard for representing workflow processes. An

instance is shown in Figure 5.4. The elements that compose a nanoflow or microflow can fall

under the following categories:

▪ Activities: Elements that represent the actions that are executed in a microflow or

nanoflow.

▪ Events: Elements represent start and end points of a microflow or nanoflow, as well as

special operations inside a loop.

▪ Flows: Denote the connection between elements.

▪ Decisions: Elements that indicate making choices and merging different paths of a flow.

▪ Loops: Used to iterate over a collection of objects.

▪ Parameter: Elements represent data that is used as input for the microflow or nanoflow.

▪ Annotations: Elements that can be used to add comments or annotations in a microflow

or nanoflow.

Besides the fact that nanoflows run on the client, and microflows on the server, there are other

important differences between the two. First, in nanoflows the client actions are immediately

executed as the steps of the flow are run. Conversely, in microflows the client actions only run

after the client runtime receives the response from the server. Also, several types of expressions

cannot be used in the same way (e.g., to obtain the current session, etc.). The same applies for

action elements. Some are available only for nanoflows, and some only for microflows.

Regarding transactions, these are only run in microflows. For nanoflows, in case of errors there

is no automatic rollback procedure. Moreover, there are differences linked to the dependencies

and limitations of the libraries used by nanoflows (i.e., JavaScript libraries) and by microflows

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

89

(i.e., Java libraries), which may also have impact on the functionalities of the flow actions and

elements.

Figure 5.4: Example of a Mendix flow including different steps.

5.2.4 Semantic Representation of Swarm App Recipes

The Swarm Apps in SmartEdge are configured using templates of applications’ specifications,

called recipes. These recipes indicate the requirements of an App, as well as the capabilities of

the IoT and other devices that form the swarm. A recipe also specifies and links to the dataflow

and the business logic of an App (e.g., using a standard like BPMN), in a declarative format. In

consequence, for those Apps in SmartEdge where this design is performed using Mendix, the

App flow will be represented using the Mendix Metamodel, and in particular microflows or

nanoflows, depending if they run on the Mendix Runtime server, or the Mendix Client.

Beyond the default features of Mendix, SmartEdge recipes are specified using semantically

enabled recipes. This means that the recipe itself will be stored in RDF format, including the

different elements of the App flow. More concretely, and as discussed in Section 3, it includes:

(i) the goal of the task to be executed by the Swarm; (ii) required conditions to start the task;

(iii) capabilities of the nodes needed to perform the task; (iv) completion conditions for the task;

(v) steps and transitions among these steps specified as a flow; (vi) topics and events messages

produced during the execution of the transitions.

Figure 5.5: Discovery of semantic recipes for the requirements of a Swarm App in SmartEdge.

One of the key elements of the recipes is the specification of capabilities of the Swarm nodes as

in Figure 5.5 and Figure 5.6, which are required to complete a given task, and comply with the

goals of the recipe. These capabilities represent functional requirements of an application,

which can be described as skills. The semantic description of these capabilities can be

implemented using semantic models for the description of Web of Things. Concretely, the TD

proposes ontology terms for describing affordances. The TD affordances provide machine-

understandable metadata of a Thing that shows the possible choices that consumers have to

interact with a Thing. As an example, the following snippet in JSON-LD represents an action

affordance indicating the possibility of any interaction to turn on or off a connected lamp.

 "actions": {

Discover recipes for the

Swarm App

Mendix Studio Pro

design environment

Swarm app Low-

code developer

Mendix KG

extension

SmartEdge

Recipes

Knowledge Graph

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

90

 "toggle": {
 "description": "Turn on or off the lamp",
 "forms": [
 {
 "href": "coaps://mylamp.example.com/toggle",
 "cov:methodName": "POST",
 "op": "invokeaction",
 "contentType": "application/json"
 }
],
 "safe": false,
 "idempotent": false
 }
 },

Therefore, when building a recipe in a low-code environment like Mendix, the KG extensions of

SmartEdge will allow specifying capabilities using semantic metadata like the TD affordances. In

this way, attached to the Mendix microflows containing the application logic and conditions, it

will contain all elements expected in a recipe, i.e., goals, sub-tasks, capabilities, prerequisites,

etc.

Figure 5.6: Creation of a Recipe using a Low-code environment in SmartEdge.

Nodes can provide different but complementary capabilities, and the recipe should specify how

the interactions among them are configured to complete a task. The metadata of these

interactions include the source and destination capabilities, which for the Low-code designer

will allow identifying Swarm nodes that can provide these capabilities. Moreover, the business

logic will be attached to the recipe using a business process language, as it is the case with

Mendix. The domain models (as shown in Figure 5.7) will use the semantic extensions to

incorporate terms from external vocabularies, to foster interoperability in SmartEdge recipes.

Create the Recipe and

store it in the KG

Mendix Studio Pro

design environment

Swarm app Low-

code developer

D

Mendix KG

extension

SmartEdge

Recipes

Knowledge Graph

D

• Capabilities

• Goals

• Sub-goals

• Prerequisites

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

91

Figure 5.7: Domain model specification in Mendix.

Regarding the recipe metadata, a different number of ontologies need to be used/reused

(shown in Figure 5.8). During the design time of the recipe, the following vocabularies and/or

ontologies might be referenced:

▪ As explained before, TD vocabulary will be used and extended to indicate capabilities.

▪ For sensor and system descriptions, including technical details of the device

specifications can be indicated using the Semantic Sensor Network ontology SSN/SOSA.

▪ To describe node-related metadata, including Swarms, SmartEdge nodes, sensor nodes,

orchestrator, coordinator, etc., the newly created SmartEdge ontology will be

employed.

Moreover, depending on the use-case, domain specific ontologies will be used to describe the

goals, and technical details of the capabilities. This might include generic ontologies for cross-

domain aspects like units of measurement (e.g., QUDT, UM), or general knowledge ontologies

like Wikidata 66 and Schema.org 67 . Furthermore, specific ontologies for healthcare,

manufacturing, or robotics might be referenced when needed.

66 https://www.wikidata.org/
67 https://schema.org/

https://www.wikidata.org/
https://schema.org/

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

92

Figure 5.8: Reuse of the SmartEdge ontologies and other external vocabularies at design time.

5.2.5 Instantiation and orchestration of Swarm Apps

With the planned extension for Mendix regarding the creation and search of recipes using

semantic metadata for capabilities, goals, prerequisites, etc., it should be possible to instantiate

these recipes in a given SmartEdge environment.

The instantiation should be able to provide a matchmaking functionality, in order to map the

capabilities needed by the recipe with the capabilities offered by the nodes in the Swarm.

Figure 5.9: Matchmaking between the capabilities required in the recipe and the nodes available in the Swarm at

design time.

The matchmaking step that addresses functional requirement LC-005 in Table 2.2 shown in

Figure 5.9 will be crucial for the design and implementation of an orchestrator for Swarm apps

Reuse domain specific

ontologies at Recipe creation

Mendix Studio Pro

design environment

Mendix KG

extension D

• Capabilities

• Goals

• Sub-goals

• Prerequisites

Schema.org

Wikidata ontology

Healthcare ontology

Automation ontology

etc.

D

D

D

Things Description Vocab

SSN/SOSA Sensor Vocab

SmartEdge Swarm ontology

D

D

D

Matchmaking of capabilities

and Swarm nodes

Mendix Studio Pro

design environment

D
Mendix KG

extension

D

• Capabilities

• Goals

• Sub-goals

• Prerequisites

Swarm

Matchmaking

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

93

in the SmartEdge environment. While in the recipe the capabilities are presented in an abstract

form, after the matching there are specific SmartEdge nodes that adopt a given role within the

Swarm. These Apps will be instantiated from existing templates (recipes), as functional

requirements CSI-010, CSI-015 in Table 2.3, targeted to match the existing devices, which would

integrate the swarm. The description of the devices and their capabilities would be specified

using the declarative and semantic models developed in Task 3.1. and described in Section 3. As

explained above, the node capabilities will be matched with the specification of the recipes, thus

enabling the instantiation of the App recipe, and configuring the interactions among the swarm

devices. The recipes themselves will be specified using semantic descriptors, and the dataflows

will use extensions that allow using the DataOps infrastructure provided in Task 3.2 (see Section

4) and instantiated using the Mendix framework.

In summary, the orchestration will need to follow the steps described below, during the design

time:

▪ SmartEdge capabilities matching – Using the common semantic schema (SmartEdge

schema) defined in Task 3.1, the matching component will map application

requirements to device capabilities in order to help discover the Swarm nodes that can

help contribute to the recipe goals. SmartEdge schema constraints will be specified

using the SHACL language.

▪ Recipe model orchestrator – This component will extend the low-code Mendix app to

support the specification of semantic recipe models, which will be used to orchestrate

the Swarm apps with the devices matching the needed requirements as addressed in

functional requirements CSI-016, CSI-017 and CSI-018 in Table 2.3.

▪ Dataflow orchestration support – This component will use the Task 3.2 DataOps

infrastructure to link the needed data sources (data streams, linked datasets, etc.) to

the orchestrated Swarm application.

As an example, if we consider the case of an App that requires capturing sensor data from a

Bluetooth connector (Figure 5.10). Using a Low-code app like Mendix, the developer should be

able to build a microflow and add connectors for different data sources (Figure 5.11).

Figure 5.10: Adding a Bluetooth connector in Mendix.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

94

Then, the application logic of the App can be built using different types of elements, including

other data connectors, conditions, sequences, etc. At this point, the extension for Knowledge

Graph support should allow adding the capabilities in terms of the TD vocabulary. It should also

allow connecting to the Knowledge Graph to reuse terminology from domain-specific

vocabularies.

Figure 5.11: Example of a flow development in Mendix.

Through these extensions of the Low-code development environment Mendix, the semantic

recipes will be stored in the SmartEdge Knowledge Graph, enabling the discovery of suitable

recipes. In this manner, when a new App is developed, it will be possible to find existing recipes

that can be reused and/or extended, thus avoiding double work. Within a recipe, a set of roles

and tasks and different dataflows can be established, so that there is a common and machine

understandable description of what the swarm should do. The semantic vocabularies will be

integrated into the SmartEdge ontology (defined in Task 3.1) and will include existing standards

such as the W3C Things Description for the Web of Things, as mentioned earlier in this section.

The developer will use the Mendix Studio Pro development environment to modify these recipes

if any changes are necessary, or if new versions of the recipe are required. All of the recipes will

be represented as RDF documents stored in the Knowledge Graph.

Once a semantically enriched recipe is created or selected, it can be instantiated, so that the

different roles specified can be assumed by different nodes in the swarm. The instantiation in a

first step will consist in matching each of the required capabilities with a Swarm node that is

able to comply with the recipe requirements. If there is no available node for a certain

mandatory part of the App flow, then the design-time environment should alert that it is not

possible to instantiate the recipe successfully.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

95

Figure 5.12: Instantiation of a SmartEdge recipe

Otherwise, if all the preconditions and capability requirements are met, the recipe is instantiated

as in Figure 5.12, and then passed on to the orchestrator, who will be in charge of executing the

recipe in runtime. This will include the coordination of the operations to be executed by different

nodes in the swarm. Therefore, the orchestrator will also include the instantiation of the

semantic description of the tasks, goals, sub-tasks, and skills established in the recipe. With this

information the coordinator will be able to know, for example, that it needs the participation of

SmartEdge smart-nodes with certain skills (e.g., stream reasoning over sensor measurements).

The coordinator will then need to find and discover which nodes comply with these

requirements. In certain cases, the orchestrator may not find the necessary resources to achieve

the recipe, and it could either fail or latently wait until the necessary resource can be scheduled.

In case of a successful node discovery, then the orchestration itself will be organized as

addressed in functional requirements CSI-019 and CSI-020 in Table 2.3.

Figure 5.13: Orchestration of the swarm using the instantiation of the recipe received by the orchestrator from the

design-time tool.

 The orchestrator, as shown in Figure 5.13 may often coincide with the swarm coordinator, and

as such will organize the forming and management of the swarm, with different nodes joining

or leaving when needed. In certain cases, the SmartEdge nodes may have the capability of

holding their own semantic descriptions (e.g., skills or affordances) so that they can be found

and incorporated at runtime in the Swarm. In any case the Orchestrator will need to perform a

matching operation between the set of available nodes and the different roles established in

the recipe, and respect the specification of skills, goals, and tasks. Once this has been

established, the different nodes will be able to start operating and exchanging the different

data/messages, potentially using the DataOps components of T3.2. After the orchestrator runs

Instantiation of the

recipe

Mendix Studio Pro

design environment

Swarm app Low-

code developer

D

Mendix KG

extension D

• Capabilities

• Goals

• Sub-goals

• Prerequisites

D

Orchestrator

Swarm

orchestration

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

96

the specified microflows, then the UI of the App will be able to process data and/or display it to

the end-user, as in Figure 5.14, with the Bluetooth connector.

Figure 5.14: Mendix end-user App interface, connecting to data from the edge device.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

97

6 CONCLUSIONS

This document introduced the concept of Continuous Semantic Integration (CSI) in the

SmartEdge project (Section 1.1). This concept is broken down into (i) Standardized Semantic

Interfaces (Section 3); (ii) DataOps toolbox for semantic management of things and embedded

AI apps (Section 4); (ii) Creation and orchestration of Swarm Intelligence apps (Section 5).

This deliverable contributes to Obj.2: Middleware and tools for continuous semantic integration

allowing the SmartEdge solution to interact with devices according to a (i) standardized semantic

interface, via a (ii) continuous conversion process based on declarative mappings and scalable

from edge to cloud, and (iii) providing a declarative approach for the creation and orchestration

of apps based on swarm intelligence.

KPIs relevant for this deliverable and Work Package 3 (WP 3) are presented in this deliverable

(see Table 2.4). The goal of this deliverable is in the first place to provide design of tools for

Continuous Semantic Integration. We will report the progress towards KPIs in the first

implementation of this work, i.e., in D3.2. The work presented so far is based on requirements

from SmartEdge use cases and the work from D2.1. Our design of CSI will be revisited in

deliverable D3.2 and will be based on requirements from D2.2.

Apart from the design, this document provided the first specification of SmartEdge Schema. This

schema formally defines important concepts of the SmartEdge architecture, which are used in

swarm formation and execution. Further on, we defined a Recipe Model as a means to create

swarm applications based on compositions of one or more things or IoT offerings. We have

started the implementation of a low-code tool for configuring and orchestrating applications

based on the Recipe Model. In order to process data from IoT devices in a unified way, we have

identified protocols and standardized information models to be used in our implementation of

use case demonstrations. We conducted interviews with use case owners to specify

requirements for Standardized Semantic Interfaces (in addition to requirements from D2.1). We

also proposed the design of the SmartEdge DataOps toolbox supporting the continuous

integration of things and applications through the standardized semantic interfaces. The

approach enables interoperability solutions based in a declarative and low-code manner.

The successor of this deliverable, i.e., D3.2 will also provide the first implementation of tools for

Continuous Semantic Integration. The first implementation of CSI will be extended with the Low-

code Programming Tools for Edge Intelligence from WP5 and will be used for the

implementation of use case demonstrations in WP6.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

98

7 REFERENCES

[Abbas17] N. Abbas, Y. Zhang, A. Taherkordi and T. Skeie, “Mobile edge computing: A survey”,

IEEE Internet of Things Journal, Vol. 5(1), 2017, pp. 450-465.

[Akhtar08] Akhtar, Waseem, Jacek Kopecký, Thomas Krennwallner, and Axel Polleres. 2008.

“XSPARQL: Traveling between the XML and RDF Worlds - and Avoiding the XSLT Pilgrimage.” In

The Semantic Web: Research and Applications, 5th European Semantic Web Conference, ESWC

2008, Tenerife, Canary Islands, Spain, June 1-5, 2008, Proceedings, edited by Sean Bechhofer,

Manfred Hauswirth, Jörg Hoffmann, and Manolis Koubarakis, 5021:432–47. Lecture Notes in

Computer Science. Springer. https://doi.org/10.1007/978-3-540-68234-9_33.

[Al Jawarneh19] I. M. Al Jawarneh, P. Bellavista, F. Bosi, L. Foschini, G. Martuscelli, R. Montanari

and A. Palopoli, “Container orchestration engines: A thorough functional and performance

comparison,” IEEE International Conference on Communications, May 2019, pp. 1-6.

[Alberti13] A. M. Alberti and D. Singh, “Internet of Things: Perspectives, Challenges and

Opportunities,” International Workshop on Telecommunications, 2013, pp. 1–6.

[Arenas-Guerrero21] Arenas-Guerrero, Julián and others. 2021. “Knowledge Graph Construction

with R2RML and RML: An ETL System-Based Overview.” In Proceedings of the 2nd International

Workshop on Knowledge Graph Construction. http://ceur-ws.org/Vol-2873/paper1.pdf.

[Arenas-Guerrero22] Arenas-Guerrero, Julián, David Chaves-Fraga, Jhon Toledo, María S. Pérez,

and Oscar Corcho. 2022. “Morph-KGC: Scalable Knowledge Graph Materialization with Mapping

Partitions.” Semantic Web Preprint (Preprint): 1–20. https://doi.org/10.3233/SW-223135.

[Bartolomeo20] G. Bartolomeo, M. Yosofie, S. Bäurle, O. Haluszczynski, N. Mohan and J. Ott,

“Oakestra: A lightweight hierarchical orchestration framework for edge computing”, USENIX

Annual Technical Conference, 2023, pp. 215-231.

[Bennara20] Bennara, Mahdi, Antoine Zimmermann, Maxime Lefrançois, and Nurten Messalti.

2020. “Interoperability of Semantically-Enabled Web Services on the WoT: Challenges and

Prospects.” In Proceedings of the 22nd International Conference on Information Integration and

Web-Based Applications & Services, 149–53. https://doi.org/10.1145/3428757.3429199.

[Calbimonte20] J. P. Calbimonte, S. Martin, D. Calvaresi, N. Zappelaz and A. Cotting, A, "Semantic

data models for hiking trail difficulty assessment", International Conference of Information and

Communication Technologies in Tourism, January 2020, pp. 295-306.

[Chaves-Fraga19] Chaves-Fraga, David, Kemele M. Endris, Enrique Iglesias, Óscar Corcho, and

Maria-Esther Vidal. 2019. “What Are the Parameters That Affect the Construction of a

Knowledge Graph?” In On the Move to Meaningful Internet Systems: OTM 2019 Conferences -

Confederated International Conferences: CoopIS, ODBASE, C&TC 2019, Rhodes, Greece,

October 21-25, 2019, Proceedings, edited by Hervé Panetto, Christophe Debruyne, Martin Hepp,

Dave Lewis, Claudio Agostino Ardagna, and Robert Meersman, 11877:695–713. Lecture Notes

in Computer Science. Springer. https://doi.org/10.1007/978-3-030-33246-4_43.

[Chaves-Fraga20] Chaves-Fraga, David and others. 2020. “GTFS-Madrid-Bench: A Benchmark for

Virtual Knowledge Graph Access in the Transport Domain.” Journal of Web Semantics 65:

100596. https://doi.org/10.1016/j.websem.2020.100596.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

99

[Chortaras18] Chortaras, Alexandros, and Giorgos Stamou. 2018. “D2RML: Integrating

Heterogeneous Data and Web Services into Custom RDF Graphs.” In Workshop on Linked Data

on the Web Co-Located with The Web Conference 2018, LDOW@WWW 2018, Lyon, France April

23rd, 2018, edited by Tim Berners-Lee, Sarven Capadisli, Stefan Dietze, Aidan Hogan, Krzysztof

Janowicz, and Jens Lehmann. Vol. 2073. CEUR Workshop Proceedings. CEUR-WS.org.

http://ceur-ws.org/Vol-2073/article-07.pdf.

[Cimmino22] Cimmino, Andrea, and Raúl García-Castro. "Helio: a framework for implementing

the life cycle of knowledge graphs." Semantic Web Preprint (2022): 1-27.

[Das12] Das, Souripriya, Seema Sundara, and Richard Cyganiak. 2012. “R2RML: RDB to RDF

Mapping Language.” W3C Recommendation. W3C.

[Debruyne16] Debruyne, Christophe, and Declan O’Sullivan. 2016. “R2RML-F: Towards Sharing

and Executing Domain Logic in R2RML Mappings.” In Proceedings of the Workshop on Linked

Data on the Web, LDOW 2016, Co-Located with 25th International World Wide Web Conference

(WWW 2016), edited by Sören Auer, Tim Berners-Lee, Christian Bizer, and Tom Heath. Vol. 1593.

CEUR Workshop Proceedings. CEUR-WS.org. http://ceur-ws.org/Vol-1593/article-13.pdf.

[Desai15] P. Desai, A. Sheth and P. Anantharam, "Semantic Gateway as a Service Architecture

for IoT Interoperability," IEEE International Conference on Mobile Services, 2015, pp. 313-319,

doi: 10.1109/MobServ.2015.51.

[Dimou14] Dimou, Anastasia, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Erik

Mannens, and Rik Van de Walle. 2014. “RML: A Generic Language for Integrated RDF Mappings

of Heterogeneous Data.” In Proceedings of the Workshop on Linked Data on the Web Co-

Located with the 23rd International World Wide Web Conference (WWW 2014). Vol. 1184.

CEUR-WS.org. http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf.

[García-González18] García-González, Herminio, Daniel Fernández-Álvarez, and José Emilio

Labra Gayo. 2018. “ShExML: An Heterogeneous Data Mapping Language Based on ShEx.” In

Proceedings of the EKAW 2018 Posters and Demonstrations Session Co-Located with 21st

International Conference on Knowledge Engineering and Knowledge Management (EKAW

2018), Nancy, France, November 12-16, 2018, edited by Philipp Cimiano and Olivier Corby,

2262:9–12. CEUR Workshop Proceedings. CEUR-WS.org. http://ceur-ws.org/Vol-2262/ekaw-

poster-08.pdf.

[Goethals20] T. Goethals, F. De Turck and B. Volckaert, “Extending kubernetes clusters to low-

resource edge devices using virtual kubelets”, IEEE Transactions on Cloud Computing, Vol. 10(4),

2020, pp. 2623-2636.

[Grassi23] Grassi, Marco, Mario Scrocca, Alessio Carenini, Marco Comerio, and Irene Celino. n.d.

“Composable Semantic Data Transformation Pipelines with Chimera.”

[Hohpe04] Hohpe, Gregor, and Bobby Woolf. 2004. Enterprise Integration Patterns: Designing,

Building, and Deploying Messaging Solutions. Addison-Wesley Professional.

[Iglesias20] Iglesias, Enrique and others. 2020. “SDM-RDFizer: An RML Interpreter for the

Efficient Creation of Rdf Knowledge Graphs.” In Proceedings of the 29th ACM International

Conference on Information & Knowledge Management, 3039–46.

https://doi.org/10.1145/3340531.3412881.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

100

[Iglesias-Molina23] Iglesias-Molina, Ana, Dylan Van Assche, Julián Arenas-Guerrero, Ben De

Meester, Christophe Debruyne, Samaneh Jozashoori, Pano Maria, Franck Michel, David Chaves-

Fraga, and Anastasia Dimou. 2023. “The RML Ontology: A Community-Driven Modular Redesign

After a Decade of Experience in Mapping Heterogeneous Data to RDF.” In The Semantic Web –

ISWC 2023, edited by Terry R. Payne, Valentina Presutti, Guilin Qi, María Poveda-Villalón,

Giorgos Stoilos, Laura Hollink, Zoi Kaoudi, Gong Cheng, and Juanzi Li, 152–75. Lecture Notes in

Computer Science. Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-

47243-5_9.

[Janowicz19] K. Janowicz, A. Haller, S. J. Cox, S. D. Le Phuoc and M. Lefrançois, “SOSA: A

lightweight ontology for sensors, observations, samples, and actuators”, Journal of Web

Semantics, 2019, Vol. 56, pp. 1-10.

[Klímek16] Klímek, Jakub, Petr Škoda, and Martin Nečaskỳ. 2016. “LinkedPipes ETL: Evolved

Linked Data Preparation.” In European Semantic Web Conference, 95–100. Springer.

[Knap14] Knap, Tomáš, Maria Kukhar, Bohuslav Macháč, Petr Škoda, Jiří Tomeš, and Ján Vojt.

2014. “UnifiedViews: An ETL Framework for Sustainable RDF Data Processing.” In European

Semantic Web Conference, 379–83. Springer.

[Kubitza17], T. Kubitza and A. Schmidt, “meSchup: A platform for programming interconnected

smart things”, Computer, 2017, Vol. 50(11), pp. 38-49.

[Lefrançois16] Lefrançois, Maxime, Antoine Zimmermann, and Noorani Bakerally. 2016.

“Flexible RDF Generation from RDF and Heterogeneous Data Sources with SPARQL-Generate.”

In Knowledge Engineering and Knowledge Management - EKAW 2016 Satellite Events, EKM and

Drift-an-LOD, Bologna, Italy, November 19-23, 2016, Revised Selected Papers, edited by Paolo

Ciancarini, Francesco Poggi, Matthew Horridge, Jun Zhao, Tudor Groza, Mari Carmen Suárez-

Figueroa, Mathieu d’Aquin, and Valentina Presutti, 10180:131–35. Lecture Notes in Computer

Science. Springer. https://doi.org/10.1007/978-3-319-58694-6_16.

[Lucky16] M. N. Lucky, M. Cremaschi, B. Lodigiani, A. Menolascina and F. De Paoli, "Enriching

API descriptions by adding API profiles through semantic annotation", International Conference

on Service-Oriented Computing, October 10-13, 2016, pp. 780-794.

[Meester17] Meester, Ben De, Wouter Maroy, Anastasia Dimou, Ruben Verborgh, and Erik

Mannens. 2017. “RML and FnO: Shaping DBpedia Declaratively.” In The Semantic Web: ESWC

2017 Satellite Events, 10577:172–77. Springer. https://doi.org/10.1007/978-3-319-70407-4_32.

[Michel15] Michel, Franck, Loïc Djimenou, Catherine Faron-Zucker, and Johan Montagnat. 2015.

“Translation of Relational and Non-Relational Databases into RDF with xR2RML.” In WEBIST

2015 - Proceedings of the 11th International Conference on Web Information Systems and

Technologies, Lisbon, Portugal, 20-22 May, 2015, edited by Valérie Monfort, Karl-Heinz

Krempels, Tim A. Majchrzak, and Ziga Turk, 443–54. SciTePress.

https://doi.org/10.5220/0005448304430454.

[Mortazavi17] S. H. Mortazavi, M. Salehe, C. S. Gomes, C. Phillips and E. De Lara, "Cloudpath: A

multi-tier cloud computing framework", IEEE/ACM Symposium On Edge Computing, October

2017, pp. 1-13.

[Naiema23] Hamed, Naeima, et al. "FOO: An upper-level ontology for the Forest Observatory."

European Semantic Web Conference. Cham: Springer Nature Switzerland, 2023.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

101

[Nguyen16] K. K. Nguyen and M. Cheriet, "Virtual edge-based smart community network

management" IEEE Internet Computing, 2016, Vol. 20(6), pp. 32-41.

[Recker06] J. Recker and J. Mendling, “On the translation between BPMN and BPEL:
Conceptual mismatch between process modeling languages”, In Proceedings of the Workshops
and Doctoral Consortium, Presses universitaires de Namur (Namur University Press), 2006, pp.
521-532.

[Sadeghi20] Sadeghi, Mersedeh, Petr Buchníček, Alessio Carenini, Oscar Corcho, Stefanos Gogos,

Matteo Rossi, Riccardo Santoro, and others. 2020. “SPRINT: Semantics for PerfoRmant and

Scalable INteroperability of Multimodal Transport.” In 8th Transport Research Arena TRA 2020,

1–10. http://hdl.handle.net/11311/1132635.

[Sajjad16] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy and V. Vlassov, "Spanedge: Towards

unifying stream processing over central and near-the-edge data centers", IEEE/ACM Symposium

on Edge Computing, October 2016, pp. 168-178.

[Saurez21] E. Saurez, H. Gupta, A. Daglis and U. Ramachandran, “Oneedge: An efficient control

plane for geo-distributed infrastructures“, ACM Symposium on Cloud Computing, November

2021, pp. 182-196.

[Scrocca21] Scrocca, Mario, Alessio Carenini, Marco Comerio, and Irene Celino. 2021. “Semantic

Conversion of Transport Data Adopting Declarative Mappings: An Evaluation of Performance

and Scalability.” In Proceedings of the 3rd International Workshop Semantics And The Web For

Transport, edited by David Chaves-Fraga, Pieter Colpaert, Mersedeh Sadeghi, Mario Scrocca,

and Marco Comerio. Vol. 2939. CEUR Workshop Proceedings. Online, September: CEUR.

https://ceur-ws.org/Vol-2939/#paper2.

[Scrocca20] Scrocca, Mario, Marco Comerio, Alessio Carenini, and Irene Celino. 2020. “Turning

Transport Data to Comply with EU Standards While Enabling a Multimodal Transport Knowledge

Graph.” In Proceedings of the 19th International Semantic Web Conference, 12507:411–29.

Springer. https://doi.org/10.1007/978-3-030-62466-8_26.

[Slepicka15] Slepicka, Jason, Chengye Yin, Pedro Szekely, and Craig Knoblock. 2015. “KR2RML:

An Alternative Interpretation of R2RML for Heterogenous Sources.” In Proceedings of the 6th

International Workshop on Consuming Linked Data, edited by Olaf Hartig, Juan Sequeda, and

Aidan Hogan. Vol. 1426. CEUR Workshop Proceedings. Bethlehem, Pennsylvania: CEUR.

https://ceur-ws.org/Vol-1426/#paper-08.

[Thuluva17] A. S. Thuluva, A. Bröring, Medagoda, G.P., Don, H, D. Anicic and J. Seeger, "Recipes

for IoT applications", Proceedings of the Seventh International Conference on the Internet of

Things, 2017, pp. 1-8.

[Thuluva20] A. S. Thuluva, D. Anicic, S. Rudolph and M. Adikari, "Semantic Node-RED for rapid

development of interoperable industrial IoT applications", Semantic Web, Vol. 11(6), 2020, pp.

949-975.

[VanAssche22] Van Assche, Dylan, Thomas Delva, Gerald Haesendonck, Pieter Heyvaert, Ben De

Meester, and Anastasia Dimou. 2022. “Declarative RDF Graph Generation from Heterogeneous

(Semi-)Structured Data: A Systematic Literature Review.” Journal of Web Semantics, 100753.

D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908

102

[Vetere05] Vetere, G., and M. Lenzerini. 2005. “Models for Semantic Interoperability in Service-

Oriented Architectures.” IBM Systems Journal 44 (4): 887–903.

https://doi.org/10.1147/sj.444.0887.

[Viola16] F. Viola, A. D'Elia, D. Korzun, I. Galov, A. Kashevnik and S. Balandin, "The M3

architecture for smart spaces: Overview of semantic information broker implementations,"

Conference of Open Innovations Association (FRUCT), 2016, pp. 264-272, doi:

10.23919/FRUCT.2016.7892210.

[Vu19] Vu, Binh, Jay Pujara, and Craig A. Knoblock. 2019. “D-REPR: A Language for Describing

and Mapping Diversely-Structured Data Sources to RDF.” In Proceedings of the 10th

International Conference on Knowledge Capture, 189–96. K-CAP ’19. New York, NY, USA:

Association for Computing Machinery. https://doi.org/10.1145/3360901.3364449.

[Xiong18] Y. Xiong, Y. Sun, L. Xing and Y. Huang, “Extend cloud to edge with kubeedge”,

IEEE/ACM Symposium On Edge Computing, October 2018, pp. 373-377.

[Zhang19] D. Zhang, T. Rashid, X. Li, N. Vance and D. Wang, "Heteroedge: taming the

heterogeneity of edge computing system in social sensing", International Conference on

Internet of Things Design and Implementation, April 2019, pp. 37-48.

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Concept of Continuous Semantic Integration
	1.2 Structure of the Document

	2 Functional Requirements
	3 Standardized Semantic Interfaces for SmartEdge
	3.1 SmartEdge Schema
	3.2 Recipe Model
	3.2.1 Definitions
	3.2.2 Requirement Analysis
	3.2.2.1 Requirement Analysis for Use Case 1
	3.2.2.2 Requirement Analysis for Use Case 2
	3.2.2.3 Requirement Analysis for Use Case 3
	3.2.2.4 Requirement Analysis for Use Case 4
	3.2.2.5 Requirement Analysis for Use Case 5

	3.2.3 Recipe Model for Use Case 4

	3.3 Domain Specific Ontologies
	3.3.1 The IEEE Standard for Autonomous Robotics
	3.3.2 OPC UA Information Model for Robots
	3.3.3 OPC 30050: PackML - Packaging Control
	3.3.4 OPC 40100-1: Machine Vision - Control, Configuration Management, Recipe Management, Result Management
	3.3.5 Domain Models for Smart Traffic

	3.4 Standardized Semantic Interfaces
	3.4.1 OPC UA
	3.4.2 W3C WoT
	3.4.3 DDS
	3.4.4 Zenoh
	3.4.5 C-V2X
	3.4.6 MQTT with SparkPLug B

	3.5 Standardized Semantic Interfaces in SmartEdge

	4 DataOps tool for semantic management of things and embedded AI apps
	4.1 Requirements for the DataOps Toolbox
	4.1.1 Data Interoperability
	4.1.2 Performance and Scalability
	4.1.3 Deployment
	4.1.4 Low-code

	4.2 State of the art
	4.2.1 Semantic Interoperability through Declarative Mappings
	4.2.2 Technical interoperability through Data Integration Tools

	4.3 Design of the DataOps Toolbox
	4.3.1 Components of the DataOps Toolbox
	4.3.1.1 DataOps Pipelines
	4.3.1.2 Node Data Connectors
	4.3.1.3 Mapping Processors

	4.3.2 Technologies for the DataOps Toolbox
	4.3.2.1 Data Interoperability through Chimera
	4.3.2.2 Performance and Scalability of Mapping Processors
	4.3.2.3 Deployment strategies for Apache Camel
	4.3.2.4 Low-code approaches to define DataOps pipelines

	4.4 DataOps Toolbox in SmartEdge
	4.4.1 Mediated Data Exchanges in SmartEdge
	4.4.2 Deployment of DataOps pipelines in SmartEdge

	5 Creation and orchestration of Swarm Intelligence apps
	5.1 State of the art – Orchestration of Swarm Edge Apps
	5.1.1 Cloud/Edge Deployment
	5.1.2 Semantic IoT Platforms and WoT APIs
	5.1.3 Semantic Descriptions of Devices for Orchestration

	5.2 Design of the Swarm Orchestration
	5.2.1 Design-time Orchestration Tooling
	5.2.2 Low-code Runtime Execution Tooling
	5.2.3 Swarm Apps Application Logic Design
	5.2.4 Semantic Representation of Swarm App Recipes
	5.2.5 Instantiation and orchestration of Swarm Apps

	6 Conclusions
	7 References

