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Executive Summary 

Deliverable 3.1 is the first iteration of the design of tools for Continuous Semantic Integration 

(CSI) in the SmartEdge project. The document will be updated in month 23 in deliverable D3.2 

based on the final revision of the design and the first implementation of the tools for CSI. 

Continuous Semantic Integration is a prerequisite for edge intelligence. In the SmartEdge 

project, the edge intelligence will be realized via low-code applications that are based on sematic 

recipes. This deliverable defines a semantic model for recipes. Low-code applications process 

data from connected devices, e.g., robots, industrial devices, vehicles, simulated assets etc. 

Recipes organize devices in so-called swarms. These devices have different capabilities, 

communicate via different protocols, exchange information in different formats, and may 

change over time. For all these reasons, CSI in the SmartEdge project provides standardized 

semantic interfaces, i.e., a unified access to device data. The interface also provides semantic 

meta-data about connected devices and relays on established standards. The challenge of 

continuous semantic integration of different information models and data formats in SmartEdge 

is tackled with the DataOps toolbox. Once the capabilities and data of connected devices are 

unified, devices can be orchestrated in swarms. Swarms may accomplish certain goals. 

SmartEdge provides a low-code approach to orchestrate connected devices with the goal of 

providing swarm intelligent apps.   
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1 INTRODUCTION 

Deliverable 3.1 provides the first iteration of the design of tools for Continuous Semantic 

Integration (CSI) in the SmartEdge project. In this deliverable we report the status of the work 

in Work Package 3 (WP3), which aims to provide CSI via three tasks: (i) the edge semantics with 

standardized semantic interfaces for IoT devices; (ii) a DataOps toolbox for continuous semantic 

integration, and (iii) a declarative and low-code approach for creation and orchestration of 

swarm apps based on recipes. To this goal, we design concepts for these three tasks. The 

concepts are based on requirements from SmartEdge use cases and the work from D2.1. The 

design will be revisited in deliverable D3.2 and requirements from D2.2. D3.2 will also provide 

the first implementation of tools for Continuous Semantic Integration. 

1.1 CONCEPT OF CONTINUOUS SEMANTIC INTEGRATION 
The concept of Continuous Semantic Integration is not established. Thus, we explain what CSI is 

and why it is needed. 

In general, the Internet of Things (IoT) together with edge intelligence brings several benefits 

across various industries and everyday life. These technologies enable the seamless flow of data 

between devices and systems, leading to improved efficiency and productivity. They can lead to 

cost savings by optimizing operations. IoT devices generate a vast amount of data. This data can 

be analysed to gain valuable insights and lead to better decision-making systems. But all these 

promises come with a hypothesis that the data generated with IoT devices can be easily 

consumed by intelligent applications. This is not always true, and very often it is a challenge. The 

reason is that IoT devices have different capabilities, communicate via different protocols, 

exchange information in different formats, and may change over time. For all these reasons, it 

is not an easy task to integrate data generated by IoT devices and make them consumable for 

application developers. Figure 1.1 introduces the concept of Continuous Semantic Integration 

as a building block between IoT devices and added-value apps. CSI in the SmartEdge project 

provides Standardized Semantic Interfaces and runs on the edge. Its purpose is to provide a 

unified access to IoT device data. The interface also provides semantic meta-data about 

connected devices and relays on established standards. For example, capabilities of devices and 

their data are described in a machine-interpretable way with standardized vocabularies. With 

this, the SmartEdge project aims to enable applications that consume IoT device data in a 

uniform manner. 
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Figure 1.1: Continuous Semantic Integration for SmartEdge 

1.2 STRUCTURE OF THE DOCUMENT 
The document has the following sections. Section 2 refers to functional requirements, which are 

defined in deliverable D2.1 and are relevant for this work; Section 3 provides the concept for 

Standardized Semantic Interfaces in SmartEdge. This work is primarily the subject of Task 3.1; 

Section 4 outlines the initial design of the DataOps toolbox in SmartEdge, which is in the scope 

of Task 3.2; Section 5 reports the current contribution in Task 3.3 on a low-code approach for 

orchestration of swarm edge applications; and finally, Section 0  closes the document 

highlighting some of the conclusions found and sketching the next steps in WP3.  
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2 FUNCTIONAL REQUIREMENTS 

This section refers to functional requirements, which are defined in deliverable D2.1 and are in 

scope of WP3, see Table 2.1, Table , and Table . These requirements will be updated in 

deliverable D2.2. Thus, we will update them accordingly in the next version of this deliverable, 

i.e., D3.2. 

Table 2.1:  Requirements for Hardware and Protocols (Section 3.6.5 in D2.1) 

ID Task Related Use Case(s) Priority 

HP-001 SmartEdge must integrate dumb devices using protocols such as OPC-UA and 
DDS. 

T3.1, T3.2 UC-4 High 

HP-005 Capability to read Controller status messages (JSON stream). 

T3.1, T3.2 UC-2, UC-3 High 

HP-006 Capability to read ETSI G5 protocols for relevant parts (V2X). 

T3.1, T3.2 UC-2 High 

HP-007 Capability to read C-ITS protocols for relevant parts (V2X). 

T3.1, T3.2 UC-2 High 

HP-008 Ability to handle public transit open data (tram locations) from outside.  

T3.1, T3.2 UC-2 Medium 

HP-009 Support for Helsinki’s open data API for providing data to Helsinki from the 
swarm sensors. 

T3.1, T3.2 UC-2 Medium 

HP-011 Capability for sending/receiving control messages (e.g., green requests) between 
operational controllers and vehicles using appropriate format and protocol. 

T3.1, T3.2 UC-2 High 

HP-014 SmartEdge must support integration of heterogeneous devices with digital 
interfaces and different standard industrial protocols, including mesh, for data 
collection from “dumb” IoT nodes of the Level 1 Swarm and its reliable 
forwarding to the Level 2 Swarm node. 

T3.1, T3.2 UC-5 High 

HP-018 The swarm edge components of the SmartEdge toolchain must be deployable 
onto an underlying software framework, such as Kubernetes or ROS 2. 
SmartEdge is a series of compatible tools, forming a toolchain, as such it will likely 
be deployed on top of a suitable software framework.  

T3.1 UC-3 High 

 

Table 2.2: Requirements for Low Code Programming (Section 3.6.6 in D2.1)  

ID Task Partner Short Name Related Use Case(s) Priority 
LC-005 Mendix should provide match making functionality to matchmake the recipes to 

the available device instances. 

T3.1, T3.3 SAG UC-4 High 
LC-006 Mendix should enable user to instantiate the recipe with selected devices, 

configure it and deploy it on the field or Edge. 

T3.1, T3.3 SAG, DELL UC-4, UC-3 High 

LC-007  Mendix should run on the cloud or the edge. 
T3.3 SAG UC-4 High 
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LC-008 Mendix should deploy the applications instantiated from recipes on the cloud or 
the edge of a system. 

T3.1, T3.3 SAG, DELL UC-4, UC-3 High 
LC-009 The low-code platform should support various communication protocols to 

execute the interactions required for a recipe, e.g., the low-code platform must 
support OPC-UA as a communication protocol in UC-4, MQTT/rest, Kafka in UC-5, 
and DDS in UC-3 It must be extendable to implement connectors for further 
protocols. 

T3.1, T3.2 SAG, IMC, DELL UC-4, UC-5, UC-3 High 

LC-015  Semantic integration of the data from different sources. 

 T3.1, T3.2 Aalto, SAG, IMC, 
DELL 

UC-2, UC-4, UC-5, 
UC-3 

Medium 

 

Table 2.3: Requirements for Continuous Semantic Integration (Section 3.6.7 in D2.1) 

ID Task Related Use Case(s) Priority 

CSI-001 SmartEdge must provide a mechanism so that (swarm) devices/vehicles can 
receive information from the environment. 

T3.1, T3.2 UC-1, UC-2, UC-3, UC-5 High 

CSI-002 SmartEdge must provide standardized semantic interfaces to access any data 
from the Edge. This applies for new IoT devices as well as for field devices. 

T3.1, T3.2 UC-1, UC-2, UC-3, UC-4, 
UC-5 

High 

CSI-005 SmartEdge must provide mechanisms to formalize external knowledge, (e.g., 
traffic rules or physiotherapists’ rules, therapies, tasks), that are applicable for 
the current scene.  

T3.1, WP5 UC-1, UC-2, UC-3, UC-5 High 

CSI-008 We should have availability of static information about the environment in 
standardized format. That is, there should be a way to check physical parameters 
in the field (e.g., in UC-2 the location of lanes, what is their logical connection, 
what lanes are controlled by what signal heads, in UC-5 the status and location 
of a person indoors/outdoors, air quality). 

T3.1, T3.2, WP5 UC-2, UC-3, UC-5 High 

CSI-010 It must be possible to link the knowledge of the environment derived in CSI-005 
with the recipe criteria defined be the Low-Code toolchain.  

T3.1, T3.3 UC-2, UC-3 High 

CSI-011 An ontology must be provided that allows the common SmartEdge concepts, 
such as nodes, smart-nodes and swarms, to be modelled in a knowledge graph, 
which can be deployed either in the Cloud, or in the swarm smart-nodes.  

T3.1 UC-2, UC-3, UC-4 High 

CSI-012 Domain specific ontologies must be defined (or reused) that can be layered on 
top of the core SmartEdge ontology that allows domain specific concepts to be 
modelled in the knowledge graph. For example, specific characteristics of an 
AMR. 

T3.1, WP5 UC-2, UC-3, UC-4, UC-5 High 

CSI-013 A swarm smart-node must have the ability to correlate sensor data from 
different sources on the same device in order to enhance the semantic 
understanding of the environment being observed, e.g. it should be possible to 
combine sensor streams from LiDAR, cameras, etc. in order to semantically 
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annotate objects and other features in an environment in the smart-nodes 
internal knowledge graph, the LiDAR giving the physical location of the object or 
feature and the camera facilitating the classification based on the same frame of 
reference. 

T3.2, WP5 UC-2, UC-3 High 

CSI-014 The same requirement as CSI-013 by integrating sensor information derived from 
other nodes in the swarm. 

T3.2, WP5 UC-2, UC-3 High 

CSI-015 A task, defined by a recipe, is instantiated by an application. That is the recipe is 
a template and a recipe is executed at runtime by an application.  

T3.3 UC-2, UC-3, UC-4 High 

CSI-016 A recipe has a clear objective or outcome. When the application achieves the 
outcome, the application terminates.  
T3.3 UC-3 High  

CSI-017 A recipe will have zero, one, or many start criteria. These are criteria that must 
be met before the application can execute. 

T3.3 UC-3, UC-4 High 

CSI-018 The steps of a recipe are defined by goals and primitives. A goal is a like a sub-
recipe, in that it has an objective and potentially start criteria. A primitive is some 
base behaviour that a swarm node innately knows how to perform. Goals are 
broken down into sub-goals and primitives until the sub-goals are completely 
decomposed into primitives; at which point the steps necessary to execute a 
recipe are completely defined by primitives.     

T3.3 UC-3 High 

CSI-019 Ideally an abend strategy should be defined for each recipe, so that if an 
application should fail during the execution of a recipe, the abend strategy 
should be put into action to mitigate, or ideally correct the failure.  
T3.3 UC-3 Medium 

CSI-020 By virtue of CSI-018 a recipe must know the primitives necessary to execute the 
application on a swarm. A mechanism must exist to match up the primitives to 
the characteristics of possible nodes in the swarm, and in this way define the 
types of nodes that will be required by a swarm to execute an application.  

T3.3 UC-2, UC-3 High 

 

This section also refers to an objective, which is in scope of WP3. 

Obj.2: Middleware and tools for continuous semantic integration allowing the SmartEdge 

solution to interact with devices according to a (i) standardized semantic interface, via a (ii) 

continuous conversion process based on declarative mappings and scalable from edge to cloud, 

and (iii) providing a declarative approach for the creation and orchestration of apps based on 

swarm intelligence. 

The three parts of this objective are addressed in Task 3.1 (see Section 3), Task 3.2 (see Section 

4), and Task 3.3 (see Section 5), respectively. 

KPIs relevant for WP 3 are shown in Table 2.4. The goal of this deliverable is to provide design 

of tools for Continuous Semantic Integration. Thus, the progress towards KPIs will follow in the 

first implementation of this work, i.e., in D3.2.   
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Table 2.4: WP3 Key Performance Indicator 

KPI number Description 
K2.1 Semantic integration should be provided for at least 4 brownfield 

protocols and more than 3 green field devices. 

K2.2 Message conversion performances increased by at least 80% wrt. to the 
baseline. 

K2.3 Semantic integration scalability (in terms of maximum concurrent 
requests and data velocity) increased by at least 50% wrt. to the baseline. 

K2.4 Reduced complexity and configuration time (at least 70%) of swarm 
intelligence Apps through the automatic instantiation and orchestration 
of template-based specifications. 
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3 STANDARDIZED SEMANTIC INTERFACES FOR SMARTEDGE 

This chapter presents the design of standard interfaces for the SmartEdge middleware. It reports 

on our activities from Task 3.1. The contribution includes: 

• SmartEdge Schema 

• Recipe Model (concept and implementation) 

• Domain Specific Ontologies for each use case 

• Standardized semantic interfaces. 

Figure 3.1 shows the overview of the semantic models that will be designed and developed in 

WP3. This figure also shows how the semantic models are related with each other. At the bottom 

level are the device semantic models which represent the semantic models of devices used in 

all the SmartEdge use cases. On the right-hand side, we see the domain models, which refer to 

the existing domain models that can be used for semantic enrichment of the device semantic 

models to describe the capabilities of devices. On the other hand, the domain models are also 

used in Recipes to describe the capabilities required for a Recipe. A Recipe formally describes an 

application template. It specifies the capabilities required for an application and data flow 

between the capabilities to realize the application. A Recipe can be instantiated and deployed 

on the devices which can fulfil the recipe requirements. An instantiated Recipe can be seen as a 

swarm in SmartEdge. SmartEdge schema is used to describe the runtime behaviour of a swarm, 

also to monitor a running swarm. Each of these semantic models is explained in detail in the 

next sections. 

 

 

Figure 3.1: Overview of semantic models in SmartEdge 

3.1 SMARTEDGE SCHEMA  
SmartEdge schema aims to formally define the important concepts of the SmartEdge 

architecture which are used in swarm formation and execution. It addresses the functional 

requirements CSI-011 mentioned in Table  by providing an ontology which defines the common 

concepts of SmartEdge and enables them to be represented and stored in a knowledge graph. 

Purpose of SmartEdge schema is to enable following swarm functions: 
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• It can be used during design time for configuration of a swarm; 

• It can be used in run time for identifying the nodes with matching skills which 

can join a swarm; 

• It can be used to monitor the execution of a swarm (e.g., entry of a node into 

swarm, exit of a node and replacing a node in swarm); 

It defines the concepts that are common to all swarms regardless of the use case applications, 

such as swarm coordinator, its interactions with a swarm orchestrator, industrial knowledge 

graph to discover nodes with required capabilities and nodes in the swarm. The role of a swarm 

coordinator and orchestrator and the relation between them is explained in Figure 3.2. The 

section below explains these concepts. 

Swarm: A swarm can be seen as an application that is instantiated from a recipe. It executes the 

tasks prescribed in a recipe and achieves the objective of the recipe. The swarm or tasks of a 

recipe can be executed centrally by the swarm orchestrator on Mendix runtime. In addition, the 

swarm orchestrator can also distribute the tasks to swarm nodes, where the tasks can be 

executed in a decentralized fashion using TUB runtime that is being developed in WP5. In order 

to formally define the common terms related to swarm and their relationship with each other, 

in this WP we develop SmartEdge schema which addresses Requirement CSI-015 from Table . 

Swarm Coordinator: The role of a swarm coordinator is to do resource coordination for the 

swarm by allocating required nodes to the swarm and manage the swarm to ensure its 

successful execution. It is the key component of the swarm as it interacts with different 

components inside and outside of the swarm for its successful execution. Figure 3.2 represents 

the role of a swarm coordinator in swarm execution. The tasks of a swarm coordinator are the 

following:  

• Discovering a node that has capabilities to run recipe tasks. 

• Connecting to a swarm node. 

• Assigning tasks to a node. 

• Replacing a node in case a swarm node wants to leave the swarm. 

• Monitoring swarm tasks etc. 

The swarm orchestrator requests the co-ordinator to provide the swarm nodes required for 

swarm execution. For this purpose, the co-ordinator first connects to an industrial knowledge 

graph where the device semantic descriptions are stored and runs the matchmaker (which 

matches a recipe’s required capabilities with available device capabilities) to discover the 

suitable devices with matching skills which could take part in swarm execution. Secondly, the 

swarm co-ordinator checks the availability of discovered devices, connects to them, requests 

them to join the swarm and onboards the node to the swarm. Once a device joins a swarm, it 

becomes a swarm node, and the coordinator provides the swarm node to the orchestrator. In 

some cases, the swarm coordinator and orchestrator can reside on the same node. 
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Figure 3.2: Role of a swarm coordinator and orchestrator in swarm execution 

Industrial Knowledge Graph: Industrial Knowledge Graph is one of the key components of the 

SmartEdge architecture. It is an RDF repository which is used to store several semantic artefacts 

developed in SmartEdge project such as:  

• SmartEdge schema for the swarm in execution 

• Recipe models developed for use cases 

• Device semantic models 

• Domain ontologies 

• Other semantic artefacts required for the use cases. 

The purpose of the knowledge graph is manyfold. It is mainly used for the following purposes: 

• For semantic discovery of the artefacts e.g., using SPARQL interface, 

• For recipe matchmaking to discover the assets with matching skills to the recipe etc. 

One of the good candidates to implement knowledge graphs in the SmartEdge project is the 

Web of Things Thing Description Directory (TDD).1 It can be used to store all the semantic 

artefacts and it provides two interfaces for querying such as: TD interface and SPARQL endpoint. 

TD interface is specially used to discover Thing Descriptions for the repository, whereas SPARQL 

endpoint can be used for general SPARQL querying. 

Swarm Orchestrator: A swarm orchestrator executes the tasks defined in a recipe in the swarm 

using swarm nodes. It connects to the swarm nodes with required skills, which are discovered 

and provided to it by the swarm coordinator. In a centralized approach the orchestrator 

executes the tasks by interacting with the swarm nodes. In a distributed approach, it assigns the 

tasks to each swarm node as prescribed by the recipe and executes the tasks by transferring the 

messages or input / output data from the swarm nodes and executing the constraints defined 

in the recipe. 

In case of dynamic swarms, during the execution of a swarm, if a swarm node may leave the 

swarm then the orchestrator requests swarm coordinator to provide another available node 

 
1 https://github.com/thingweb/thingweb-directory 

 

https://github.com/thingweb/thingweb-directory
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with required skills in order to execute the swarm. The role of a swarm orchestrator is depicted 

in Figure 3.2. 

In the SmartEdge project, the swarm orchestrator can run on Mendix in a centralized approach 

e.g., UC4, in this case Mendix can be used to create and run the recipes. In a distributed 

approach, the orchestrator can run on TUB runtime that is being developed in WP5. Swarm 

orchestrator addresses the required CSI-015 from Table , as it takes care of the execution of 

tasks in a swarm that are prescribed by a recipe. 

 

Figure 3.3: Overview of SmartEdge Schema 

Figure 3.3 represents the concepts in the SmartEdge schema and the relationships between 

them. The main concepts in the schema are the SmartEdge node, SmartEdge smart node, swarm 

co-ordinator and the swarm orchestrator. SmartEdge smart node is a subclass of SmartEdge 

node where the smart node has the capability to dynamically join or leave the swarm. Each of 

these nodes has certain attributes and relationships with other nodes which is depicted in Figure 

3.3.  

Each SmartEdge node has the attributes such as: node id, node capabilities, network attributes, 

location, events it publishes and subscribes, security scheme to connect to the node, its 

reachability state etc. which are characteristics of a node. A swarm coordinator has attributes 

such as swarm-id, network attributes etc. as it manages the swarm and connects to the nodes 

in the network. Swarm orchestrator has a relationship to the recipe which it runs through the 

swarm. 

3.2 RECIPE MODEL 

3.2.1 Definitions 

Capability: Capabilities are production-relevant abstractions of functions applied in the context 

of a process step. Capabilities are implemented by means of skills. E.g., “drilling a hole with a 

depth of max. 20 cm, diameter of max. 10 mm and with tolerance +/- 0.1 mm into certain types 

of metals”. 

Recipe: A Recipe is a template that specifies the requirements of an application that can be 

created by composing one or more things or IoT offerings [Thuluva17], [Thuluva20]. Recipe 
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specifies the capabilities of things or offerings required to execute the application. Additionally, 

it also specifies the data flow between things or business logic on how the things should interact 

with each other to achieve the goal specified by the application. Therefore, a recipe template 

mainly consists of two parts: required capabilities and interaction between capabilities as shown 

in Figure 3.4. 

A capability describes the functional requirements of an application such as the capability of a 

thing required for an application. For example: drilling capability, capability to lift a product, 

capability to move a product from a to b, capability to detect an anomaly etc. Optionally 

capability can also describe non-Functional Properties (NFPs) such as price to access an 

ingredient, its location, and others. A thing can have one or more capabilities. It is possible to 

link the knowledge of the environment derived in CSI-005 with the recipe criteria in the form of 

NFPs. That is, the constraints about the environment can be modelled as NFPs of a recipe 

capability that must be fulfilled by a matching device or offering in order to instantiate a recipe. 

They are defined in the device semantic model of a thing using standardized domain semantics. 

In SmartEdge the capabilities of a thing can be specified as interaction patterns in case of things 

using Web of things standard, or as FX capabilities in case of things using OPC UA standard as 

shown in Figure 3.4. 

An interaction defines how two capabilities should interact with each other to fulfil a task or 

achieve a sub-goal of a recipe. It specifies the source and destination capabilities of an 

interaction. It also defines the operations (e.g., Retrieve, Create, publish, subscribe etc.) that 

should be executed on each capability to get the required information/output from a capability 

and execute an application. Furthermore, an interaction also specifies the constraints or 

conditions for interaction. Lastly, the business logic that should be executed for the application 

based on the information retrieved from the capabilities can be defined as part of an interaction.   

Therefore, the objective of an application can be defined using a recipe by describing the tasks 

and goals of the application. A task can be defined in a recipe using its capabilities and 

interactions. One or more tasks can be used to define a goal.  

A recipe can be created using low-code application development tools such as Medix, Node-RED 

etc. In these tools the capabilities are represented as graphical nodes. A user can drag and drop 

the nodes and they can implement the interactions between the nodes (business logic) as scripts 

in any programming language. The capability nodes and interactions can be interlinked with 

each other in a desired way to create a recipe. The graphically created recipe can then be saved 

for later use. Furthermore, a recipe semantic model can be generated from the graphically 

created recipe which can be stored in an industrial knowledge graph and used during the 

instantiation of a recipe. 

A recipe semantic model is a formal description of a recipe in RDF format. It mainly contains the 

semantic description of the required capabilities, and the dataflow between the capabilities that 

is represented through the interactions. However, the business logic present in the interactions 

is not part of the recipe semantic model. The main purpose of the model is two-fold. Firstly, it is 

used to discover the recipes required for an application. Secondly, it is used during matchmaking 

to discover the things or IoT offerings which have the capability to implement the recipe. 

In SmartEdge project there are few requirements for a recipe where it should specify the 

following requirements:  

• objective of the task  

• roles (capabilities & constraints) needed to perform the task  
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• any required starting conditions  

• goals and subgoals necessary to complete the task 

• conditional transition between goals or sub-goals 

• topics related to the transitions 

• event messages that will be published when the transitions occur 

• any abend conditions and actions.  

These are the requirements for recipes in SmartEdge (these requirements are taken from D 2.1: 

swarm Recipes). As explained in the previous paragraphs a recipe can specify the objective of an 

application or a swarm, its goals, tasks and sub-tasks. The starting or triggering conditions for an 

application can also be specified using a recipe. Topics or event messages can be published by 

capabilities, and they can be subscribed by other capabilities in a recipe. Moreover, one or more 

recipes can be composed together to achieve a broader goal. 

 

Figure 3.4: Recipe Model 

Here we present a sample recipe for use case 3 to show how requirements for an application, 

its goals, tasks, and constraints can be specified in a recipe. The recipe specifies the requirement 

for the application to move a manufactured product which is ready for pick up to an appropriate 

mobile rack. For details about the application please refer to D2.2. Figure  shows the recipe with 

its required capabilities and interactions. In the next paragraphs we explain the recipe in detail. 

The objective of the recipe is to place the manufactured product in an appropriate mobile rack. 

To fulfil this objective, the recipe should achieve the following goal: move the product from the 

end of the conveyor belt to the chosen mobile rack. Several tasks should be done to achieve this 

goal such as the following: 

• Task1: Identify the mobile rack where the product should be placed as per the product 

description. 

• Task2: Pickup the product when the product is ready for pick up. 

• Task3: Move the product from pickup station to mobile rack position. 

• Task4: overcome obstacles (if any) while moving the product. 

• Task5: place the product in the mobile rack. 
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A task is specified in a recipe with one or more capabilities and interactions between the 

capabilities. In our sample recipe, consider Task 3, Figure  shows how this task is specified in the 

recipe. It is specified using the capabilities “FindMobileRack”, “MoveProductToRack” and the 

interactions between them. In this way all the tasks mentioned above are specified in the sample 

recipe using its capabilities and interactions. 

The starting or triggering condition means the condition that should be met to start the recipe 

execution. It is specified in the sample recipe using the capability “ProductReadyForPickUp” and 

the interaction below it. It means that when the “ProductReadyForPickUp” event occurs then 

the product is at the end of the conveyor belt, and it is ready to be moved to the mobile rack. 

Therefore, the recipe execution should start to move the product. 

Conditional transitions are represented in the interactions. Every capability in a recipe should 

support certain operations such as create, retrieve, update, publish, subscribe etc. using which 

information can be sent or retrieved from the corresponding thing or IoT offering. Using these 

operations, we can define the publishing of event messages from a thing or subscribing to event 

messages from a thing in a recipe. 

In this way, a simple recipe model can specify applications and its requirements. In the first 

phase of the project, we focus on the centralized approach where a recipe will be executed 

centrally on the Mendix runtime for all the use cases. For this approach, the current recipe 

model is sufficient. Recipe model can be extended in the later phases of the project to suit the 

requirements of a decentralized or distributed approach which will be implemented on TUB 

runtime in WP5. 

 

Figure 3.5: Sample Recipe for UC 3 
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Figure 3.6: Recipe task definition: Move product to mobile rack 

In SmartEdge project there are 5 use cases. To understand and address the requirements of all 

the use cases for recipes, we performed requirement analysis for each use case. In the next 

section we present the results of the analysis. 

3.2.2 Requirement Analysis 

There is a lot of diversity in the use cases of SmartEdge project, each one of them is focusing on 

different domains and heterogenous applications. Use case 1&2 focus on smart traffic 

management domains, whereas as use cases 3&4 focus on smart manufacturing domains. On 

the other hand, use case 5 focuses on the health care domain.  

Therefore, it is essential to understand the requirements of each of these use cases to 

understand the applications they would like to demonstrate, identify the capabilities required 

to implement the applications. Moreover, to understand the physical and virtual devices and 

assets (or IoT offerings) that will implement the applications. With this purpose we conducted 

requirements analysis for each use case. For this task we posed some questions to each use case 

to identify the applications in the use case. Additionally, we also provided them some templates 

to understand their requirements regarding capabilities and devices required for their 

applications. Use case owners proactively participated in the requirements analysis and 

provided the required information. In addition to this, we conducted interviews with each use 

case team to determine the requirements further. As a result of this entire process, we could 

identify the semantics required for device semantic interfaces of the devices, capabilities offered 

by the devices and capabilities required for the applications. We further identified the recipes 

for each use case. These results will be used throughout WP3 for the design and development 

of recipe model, device semantic models, and capabilities. Below we present the questions, 

templates, and results of the analysis for each use case.  

Questions: 

1. Which applications do you envision in your use case? 
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2. What are the capabilities required to realize the application? 

3. What are the devices used in the use case? 

4. What are the capabilities implemented by the device? 

These questions are addressed using a table as shown below. 

Detailed description about each use case can be found in D2.2. In this deliverable we would like 

to focus on the requirements of use cases for semantic models such as recipes that the use case 

owners like to implement to showcase their use case. The capabilities that should be 

semantically modelled to use in recipes. The assets (devices, things and offerings) that should 

be modelled using standardized models such as Web of Things Thing Description, OPC UA etc. 

and the domain semantic models that should be used for the use case are the focus of this 

deliverable. 

3.2.2.1 Requirement Analysis for Use Case 1 

Table 3.1 presents sample application(s) from use case 1 and the capabilities required to run the 

application. An application can be formalized as a Recipe which is the composition of one or 

more capabilities. Recipe specifies the task, or an application and the capabilities required to 

implement the task on assets. A capability is implemented on assets or things. Table 3.2 lists the 

assets from use case 1 which implement the capabilities required specified in for the application. 

Table 3.1: Use Case 1: Applications and Their Required Capabilities 

Application Required Capabilities 

SmartEdge integration with a 

virtual environment 

 

1. Detecting brightness level 
2. Enabling / Disabling a light source 

Semantic assessment of 

ADAS systems using sensor 

fusion 

3. Semantically describe the current state of a system of 
combined sensors. In UC1 this would be a car and its 
sensors and different cameras. 

Changing scenes to 

generated alternate test 

cases 

Same as previous application scenario 

 

Table 3.2: Use Case 1: Mapping Capabilities to Things (SmartEdge Nodes) 

Capability (from above table) Things (nodes) that have the skills to implement the 

capability 

1. Brightness Sensor Measure the environment’s brightness, for example for 
automatic light control in tunnels or during nights. The 
measurement should be fine grained enough to differentiate 
between day and night times as well as direct or indirect sun 
light (e.g., driving through a tunnel).  
The thing is provided as virtual sensor within the virtualization 
environment of UC1 but could be based on a real sensor.  

2. (Light) Switch Providing the ability to switch an actuator between two states 

whereas the two states are on / off of a light source in UC1 

(like a street light that can be turned on and off). The thing 
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will be provided as virtual actuator within the virtualization 

environment of UC1 but could be based on a real one. 

3. Car In UC1 a car can be seen as the composition of multiple car 
specific things. The things are simulated in the virtual 
environment and will provide data via smart edge semantic 
interfaces. The following things are used to create a semantic 
scene based on sensor fusion. 
 

- LiDAR: Provides point cloud measuring in terms of 
RGBD Video Streams or Images 

- Ultrasonic Sensors: Short distance object detection 
- Radar: Detection of objects on roads 
- Camera: Providing video stream from a car’s 

environment, a car may have multiple cameras 
- Location: Latitude, Longitude, Altitude, Direction, 

Speed based on changes in the geolocation over time 
- Speed: The current speed of the car which could be 

different to the speed that is based on geolocation 
data 

3.2.2.2 Requirement Analysis for Use Case 2 

Similar to use case 1, the semantic requirements for recipes, capabilities and device semantic 

models for use case 2 are presented in Table 3.3. 

For example, use case 2 would like to implement an application such as “Option zone monitoring 

and optimization of vehicle flow” to monitor and optimize the option zone near the traffic light 

signals at intersections. This application can be implemented as a recipe where the required 

capabilities are “getting real-time location and speed of vehicles”, “calculating vehicle count in 

the option zone”, “calculating vehicle to vehicle distance and speed” etc. as listed in Table 3.3. 

These capabilities can be implemented on assets such as Sensor Node (an edge device 

connected to radars and cameras), Vehicle Node (with built-in sensors and V2X OBU), etc. 

Therefore, the semantic requirements for this use case are to define the mentioned capabilities, 

device semantic models for nodes such as sensor node, radar, camera, built-in car sensors, and 

traffic controller, using standardized domain semantic models. 

Table 3.3: Use Case 2: Applications and Their Required Capabilities 

Application Required Capabilities 

Option zone monitoring and 

optimization of vehicles flow: 

 

Especially when the traffic signal state 

is yellow, in which case each 

driver/vehicle in the option zone may 

decide either to accelerate and pass 

before the red sign appears, or to 

brake and slowdown. Such different 

decisions among vehicles may increase 

the risk of back collisions near the 

traffic lights. To tackle such issues, UC2 

monitors the option zone traffic 

1. Real-time detection of vehicles near the 

traffic light signal. Detecting vehicles that are 

moving on specific road and/or specific lane 

towards the stop line. This needs real-time 

probe of vehicles at high frequency 

resolution (10 Hz) 

2. Obtain current traffic light signal status 

(whether it is yellow, green, red, etc.) 

3. Calculate real-time traffic indicators per each 

traffic light:  

a. Vehicle count in the option zone 

b. Vehicle to vehicle distance and speed 

c. Number of approaching vehicles 
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situation near intersections, decides 

on the required actions, and sends 

action commands to the vehicles and 

traffic lights to optimize the traffic.  

d. Queue length (Number of stopped 

vehicles in the queue or the length in 

meters) 

4. Decide on the required actions for the option 

zone 

5. Send action commands (SPAT message) from 

the infrastructure to the vehicles 

6. Control the traffic lights (change traffic light 

statuses/colors if needed) 
 

Table 3.4: Use Case 2: Mapping Capabilities to Things (SmartEdge Nodes) 

Capability 

(Numbers 

from the 

above 

table) 

Things (nodes) that have the skills to implement the capability. 

No. 1 Smart nodes with the required skills:  

• Sensor Node 

• Vehicle Node 

 

Some Details: 

• Passive detection performed by our Sensor Node that has the: 

o Radar object measurement 

o Camera object detection 

• Active detection: Connected V2X-enabled vehicles periodically send 

their geolocation, speed, acceleration, etc. Via V2I communication. 

Uses: 

o Built-in car sensors to measure car’s location, speed, etc. 

o V2X on-board unit of the car 

No. 2 Smart nodes with the required skills: 

• Controller Node (Traffic Light Controller) 

 

No. 3 Smart nodes with the required skills: 

• Traffic node  

o Metric Twin 

 

Some Detail: 

The Metric Twin sub-component of the Traffic Node calculates traffic indicators 

based on the data received from the Sensor nodes and Controller node. 

No. 4 Smart nodes with the required skills: 

• Controller Node 

 

Some Detail: 

The decision logic works based on the calculated traffic indicators (by Traffic 

Node) and the traffic light status. 

No. 5 Smart nodes with the required skills: 
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• Controller Node 

 

Some Detail: 

The traffic controller node sends SPAT messages via a V2X Module to the 

Connected Vehicles. 

No. 6 Smart nodes with the required skills: 

• Controller 

 

3.2.2.3 Requirement Analysis for Use Case 3 

Similar to use case 2, the semantic requirements for recipes, capabilities and device semantic 

models for use case 3 are presented in Table. In section 3.2 we explained in detail an example 

application from use case 3 such as “move product to a mobile rack”. We showed how a recipe 

can be used to specify the application requirements, goals and tasks. Please refer to Figure  and 

Figure  for details.  

Table 3.5: Use Case 3: Capabilities and Skills 

Use Case Required Capability  Capabilities that should be implemented on Assets 

3 Product mover • move across floor in 2 dimensions 

• lift product vertically from underneath  

• classify objects using camera images 

• measure distance to surfaces using LiDAR 

• measure distance to surfaces using 

stereoscopic camera 

• receive image data from camera streams 

• triangulate position and pose of objects based 

on cameras streams   

• construct SLAM map from measurement data  

• construct Semantic SLAM map by fusing SLAM 

map with object classification  

• motion planning to move product  

• motion planning to navigate factory floor 

• automatically detect obstacles from Semantic 

SLAM map 

• avoid obstacles detected in Semantic SLAM 

map 

• communicate obstacles to other SMARM 

nodes 

• select mobile storage rack based on product 

type. 

• forward information on product being moved. 

• immediately halt if humans detected in local 

vicinity  

3 Mobile storage rack • store products of specified type in rack slot 

• record slot of specific product instance in rack 

• apply rack brake.  

• detect product in slot 
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• provide list of slot and product information 

• knows next process operational area for 

products  

• automatically request storage mover when full 

to tow to next process operational area 

3 Storage mover • move across floor in 2 dimensions 

• connect to mobile storage rack 

• instruct mobile storage rack to release and 

apply brake   

• able to tow mobile storage rack  

• classify objects using camera images 

• measure distance to surfaces using LiDAR 

• measure distance to surfaces using 

stereoscopic camera 

• receive image data from camera streams 

• triangulate position and pose of objects based 

on cameras streams   

• construct SLAM map from measurement data  

• construct Semantic SLAM map by fusing SLAM 

map with object classification  

• motion planning to navigate factory floor 

• automatically detect obstacles from Semantic 

SLAM map 

• avoid obstacles detected in Semantic SLAM 

map 

• communicate obstacles to other SMARM 

nodes 

• immediately halt if humans detected in local 

vicinity 

3 Product conveyer • move product out of processing area for 

collection 

• read RFID tag for specific product instance 

information 

• request product to be removed from conveyor 

• forward product specific product instance 

information 

3 Overhead image 

capture 

• capture images using camera 

• blur human faces 

• stream images to remote swarm node 

3.2.2.4 Requirement Analysis for Use Case 4 

Similar to use case 2 and 3, the semantic requirements for recipes, capabilities and device 

semantic models for use case 4 are presented in Table, Table 3.7 and Table 3.8. Use case 4 is an 

industrial use case focusing on optimizing the manufacturing process by enabling custom 

production, anomaly detection and efficient production planning. For these applications, 

capabilities such as custom configuration of a product, ability to detect anomalies etc are 
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required. It uses assets such as manufacturing unit, camera, NPU etc to realize the recipes. 

Semantic requirements for use case 4 are explained in detail in Section 3.2.3. 

Table 3.6: Use Case 4: Applications and Required Capabilities 

Use Case Application Required capabilities 

4 customized production 

Description: 

Customer can 

dynamically configure 

the order of colour 

blocks for his product 

on Mendix. 

There are five colour 

blocks available for 

creating a new product 

on the demo 

manufacturing unit. 

They are green, blue, 

white, red and yellow. 

The Recipe offers 

flexibility for a user to 

dynamically configure 

the colours and their 

order for his new 

product. 

• Configuring the colours of block of a product 

to be manufactured  

• Manufacture the product. 

• Place the finished product on the end station. 

• Notify AGV/user about finished product 

 

Table 3.7: Use Case 4: Capabilities and Corresponding Skills 

Use Case Required Capability  Capabilities that should be implemented on Assets 

4 Configuring the 

colours of block of a 

product to be 

manufactured 

• Colour blocks 

• Identify required color block 

• Lift the block  

• Identify tray 

• Place the block in tray 

4 Manufacture 

configured product 

• Move the tray 

4 Place the product on 

end station 

• Identify the tray containing finished product  

• Move the product to end station  

• Notify user to pick up product 

The table below further provides the requirements for devices and their characteristics in UC4. 

Table 3.8: Use Case 4: Device / Asset with Required Skills and Characteristics 

Use 
Case 

Device Capabilities on 
Assets / Properties, 
Actions & Events 

Protocol Service 
framework 

Characteristics of 
device 

Smart 
Node 
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3.2.2.5 Requirement Analysis for Use Case 5 

Similar to use case 2, 3 and 4, the semantic requirements for recipes, capabilities and device 

semantic models for use case 4 are presented in Table 3.9, Table 3.10 and Table 3.11. Use case 

5 falls under the health care domain. The applications in this use case do not need to be 

implemented using recipes. However, other semantic models such as device semantic models 

are relevant to this use case to model assets such as tablet, Nordic thingy52, Raspberry Pi board, 

pantilt, laser pointer, BLE connectors, mobile app etc. 

Table 3.9: Use Case 5: Applications and Required Capabilities. 

Use 

Case 

Application Required capabilities 

5 

(HES-

SO) 

The users of UC5 are 

intended to be   patients 

(PAT) rehabilitating their 

neck or individuals 

undergoing neck 

sensorimotor 

assessment, and 

physiotherapists (PHY). 

PHY can define and 

assign the tasks to be 

performed by PAT. 

PAT has to put on 

wearable sensors 

(number variable 

according to the needed 

• Profiling PAT via tablet/web interfaces 

• PHY can create sessions and tasks for PAT 

• The system has to project images/pointers on 

PAT’s surroundings complying with the 

sessions/tasks created. 

• The system has to acquire PAT’s movement via 

wearable sensors 

• The system has to provide run-time feedback to 

PAT during the tasks’ execution (via wearables 

and tablet) 

• PHY can annotate the PAT’s tasks 

• The system has to analyze PAT’s data 

• Wearable sensors have to be place-and-play 

• Wearable sensors can be replaced on-the-fly 

4 Robot 
Arm 

Properties 

• Arm status 

Actions: 

• Lift a block, 

• place a 

block on a 

tray, 

• identify the 

colour of 

the block, 

• scan the 

block 

Events: 

• Block not 

found 

notification, 

• Block 

placed on 

the tray 

notification  

OPC UA Mendix • Device 

Fixed/Mobile 

• Physical 

dimensions  

• Weight it can 

lift etc. 

No 
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activity) and can select 

the tasks to be 

performed on a tablet.  

PAT is required to follow 

pointers and/or images 

projected on their 

surrounding walls. PAT 

are profiled and all their 

sessions/tasks are 

stored to allow further 

analysis. 

• Wearable sampling frequency and 

communication rate can be modified at the lunch 

of the application 

• Inter-sensor communication has to be seamless 

and standardized 

• Wearables Migration should be allowed 

• Neck movements (angles/speed) should be 

computed, and acquired-stored 

Table 3.10: Use Case 5: Capabilities and Corresponding Skills 

Use 

Case 

Required Capability Capabilities implemented on Assets 

5 

(HES-

SO) 

A. Profiling PAT via tablet/web interfaces A.1 -The application should allow PHY to 

enter new patients.  

A.2 - PAT should have a profile on the 

system and be able to login and follow the 

assigned tasks. 

B. PHY can create sessions and tasks for 

PAT 

B.1 - PHY can create tasks: assigning them 

a name, description, duration, etc. 

Defining a task comprises specific 

motions (e.g., angles, directions, pace, ...) 

C. The system has to project 

images/pointers on PAT’s surrounding 

walls complying with the sessions/tasks 

created. 

C.1 - A laser pointer mounted on a pan-tilt 

and connected to an embedded board 

has to enact the movements specified in 

the tasks. 

D. The system has to acquire PAT’s 

movement via wearable sensors 

D.1 - PAT has to follow with their gaze the 

pointers (executing the task). Wearable 

sensors placed on PAT will acquire inertial 

data and send them to a SmartEdge node 

(I.e., a tablet). 

E. The system has to provide run-time 

feedback to PAT during the tasks’ 

execution (via wearables and tablet) 

 

E.1 - The tablet has the duty of 

coordinating the data coming from the 

self-organized wearables and reconstruct 

PAT movements. 

F. PHY can annotate the PAT’s tasks 

 

F.1 - Once the acquired inertial data will 

be processed and form a trajectory 

(space/time), PHY should be able to see 

and assess/annotate it. 

G. The system has to analyze PAT’s data 

 

G.1 - besides PHY’s annotation, the 

system should perform PAT’s tasks 

analysis via pre-defined symbolic rules 

H. Wearable sensors have to be place-

and-play 

 

H.1 - The wearables (smartEdge nodes) 

will have to be turned on an placed 

seamlessly. It means that after their 
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positioning, the wearables must be able 

to understand their role (i.e., via an 

inverted kinematic chain). 

I. Wearable sensors can be replaced on-

the-fly 

I.1 - Sensors might fail (i.e., flat battery) 

and a seamless sensor replacement on-

the-fly must be allowed. 

J. Wearable sampling frequency and 

communication rate can be modified at 

the lunch of the application 

J - The streaming and messaging 

frequency of the wearables might depend 

on the assigned task. Hencheforth, the 

streaming rate must be variable. 

K. Inter-sensor communication has to be 

seamless and standardized 

 

K.1 - Wearables must be able to talk with 

a SmarEdge Orchestrator (to be 

investaged if a p2p communication is 

needed). 

L. Wearables Migration should be 

allowed 

L.1 - Besides being replaced, wearable (or 

any sensor involved in UC5), might be 

required to migrate from one 

orchestrator to another and to change 

the performed tasks. 

M. Neck movements (angles/speed) 
should be computed, and acquired-
stored 

M.1 - The SmartEdge orchestrator must 

be able to retrieve, filter, align, and 

process the inertial data received by the 

wearables. 

Table 3.11: Use Case 5: Skills and Assets That Implement Them 

Use Case Capabilities 

implemented 

on Assets 

Hardware/Software Device/Asset 

UC5 

(HES-SO) 

A.1 H: tablet, PC 
S: mobile-interface, web-interface, SmartEdge Orchestrator & 
Node 

A.2 H: Tablet, PC 
S: mobile app, back-end server 

B.1 H: Tablet, PC 
S: mobile app, back-end server 

C.1 H: tablet, Raspberry Pi board, pantilt, laser pointer, BLE 
connectors 
S: mobile app, and SmarEdge Orchestrator & Node code 

D.1 H: tablet, Noprdic thingy52, Raspberry Pi board, pantilt, laser 
pointer, BLE connectors 
S: mobile app, and SmarEdge Orchestrator & Node code 

E.1 H: tablet, Noprdic thingy52, Raspberry Pi board, pantilt, laser 
pointer, BLE connectors 
S: mobile app, and SmarEdge Orchestrator & Node code 

F.1 H: tablet, PC 
S: mobile & web app, and SmarEdge Orchestrator & Node code 

G.1 H: tablet, PC 
S: mobile & web app 
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H.1 H: tablet, Nordic Thigy52 
S: mobile app, SmartEdge Orchestrator & Node code 

I.1 H: tablet, Nordic Thigy52 
S: mobile app, SmartEdge Orchestrator & Node code 

J.1 H: tablet, Nordic Thigy52 
S: mobile app, SmartEdge Orchestrator & Node code 

K.1 H: tablet, Nordic Thigy52, Raspberry Pi 
S: mobile app, SmartEdge Orchestrator & Node code 

L.1 H: tablet, Nordic Thigy52, Raspberry Pi, 
S: mobile app, SmartEdge Orchestrator & Node code 

M.1 H: tablet, Nordic Thigy52 
S: mobile app, SmartEdge Orchestrator & Node code 

3.2.3 Recipe Model for Use Case 4 

Use case 4 is an industry use case that demonstrates flexible manufacturing of a product. 

Therefore, it uses the well-established industry standard called OPC UA (Open Platforms 

Communication Unified Architecture). The standard provides both the communication protocol 

and semantic models for modelling the information for interoperability. Therefore, in this use 

case we use both OPC UA communication protocol and its semantic models which are provided 

by OPC Foundation as the companion specifications and their information models. 

 

OPC UA FX: 

OPC UA FX is one of the standards developed by OPC Foundation. OPC Unified Architecture Field 

eXchange (UAFX)2 extends the OPC UA model to enable field device interconnection. It aims to 

facilitate controller-to-controller interactions. Additional interactions – controller-to-device, 

device-to-device, and controller-to-compute – are intended to be addressed in future releases. 

The current objective is to provide a standardized field component model (information and 

interfaces) alongside an information exchange model. The emphasis is on enabling timely data 

delivery, security, and functional safety. UAFX defines an asset component that can represent a 

security key or software license. Such assets can be referenced by and/or installed within a 

controller. 

OPC UA FX introduces several significant model entities as shown in Figure : 

AutomationComponent  

Represents an entity that performs one or more automation functions (e.g., a representation of 

one or more related field devices). 

FunctionalEntity  
An information model identifying a set of related FX input data, output data, configuration data, 
diagnostic information, and methods to manipulate and/or share the data. 
Connection  

A logical relationship between FunctionalEntities. 

ConnectionManager  

Responsible for establishing (and removing) Connections. 

Asset  

Represents a component with a lifecycle (e.g., versioning). 

 

 
2 OPC UA FX is an outcome of the OPC UA Field-Level Communication (FLC) Initiative. 



D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908 

 

38  

 

 

Figure 3.7: FX Model Entities 

The significance of these entities is in their ability to provide a level of model specificity 

previously missing from OPC UA. This specificity is well aligned with concepts needed to support 

a Skills-oriented perspective.  

AutomationComponent 

An AutomationComponent is an entity that performs one or more automation functions and 

provides connection capabilities. The AutomationComponentType is composed of two major 

sub-information models, asset model and functional model. It also provides information related 

to offline engineering, general metadata such as communication capabilities and the health 

status. Figure  provides an illustration of this model. 
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Figure 3.8: A conceptual overview of an OPC UA FX automation component. 

The AutomationComponent is the base model for an OPC UA FX device/controller/PLC/etc. It 

includes information related to current asset(s), the available functionality, the capabilities 

(including communication related capabilities) and any offline information. The 

AutomationComponent provides for grouping Asset instances and FunctionalEntity instances. It 

exposes a Method that is used to establish logical connections between instances of 

FunctionalEntity. An overview of the AutomationComponent information model is illustrated in 

Figure . 
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Figure 3.9: An overview of the AutomationComponent information model. 

DeviceHealth and DeviceHealthAlarms provide an overall health status of the 

AutomationComponent instance. This includes a summary of all included Assets and 

FunctionalEntities. Each Asset and FunctionalEntity might include additional diagnostics that 

are more specific. For a complete description see OPC 10000-100. 

The FunctionalEntity information model is the base model for describing all functionalities in 

an OPC UA FX information model. Functional entities encapsulate logical functionality. 

Functional entities are designed in a way that they can describe functionality of any complexity 

ranging from the acquisition of a single measured value to controlling an entire machine or 

production line. Functional entities can also be preconfigured and fixed (e.g., a device such as a 

drive) or they can be dynamically created during engineering or at run time. A logical 

functionality is viewed as an identifiable process with properties, inputs, outputs, and a 

configuration that generates events and diagnostic data (see Figure ). 

 

Figure 3.10: Key aspects of the Functional Entity model. 

A functional entity can interact with other functional entities by exchanging data. It provides 

methods for the manipulation or sharing of the data. The exchange of data may be for control 

or monitoring purposes. Interactions are represented as logical connections (which in turn are 

modeled as a Connection. Inputs and/or outputs can be arranged into logical groups to ease 

configuration, simplify establishing interactions, and/or to restrict access. Inclusion in one group 

does not preclude inclusion in other groups. Functional Entity information model is described in 

detail in Figure . 
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The functional entity information model is illustrated by Figure  with the key members described 

as follows: 

Identification properties:  

• Identity - When establishing a logical connection between functional entities, it may 

be essential to confirm identity, meaning to check that the other functional entity is 

the one that is expected. Therefore, functional entities provide the information and 

methods to perform such identity verifications. 

• Input data - describes the values that may be provided from another functional 

entity and consumed by this functional entity. 

• Output data - describes the values that are provided by the processing of this 

functional entity and are available for other functional entities to consume. 

• Configuration data - describes any value that is used to set up and configure 

functionality.  

• Diagnostic data - The functional entity maintains information related to the status 

of its functionality, including the status of any logical connections. This may include 

the generation of events or alarms related to problems or issues encountered by the 

functional entity. 

A functional entity can be of varying degrees of complexity and can represent different 

granularity and abstraction levels, from primitive functionality to an entire application. It is 

expected that the FunctionalEntity model will be subtyped by other models. It can have sub-

functional entities and relationships to other objects defined in this model or in other models.  

For example: 

There are primitive functional entities that only generate output data like a temperature sensor 

or only receive input data like a relay. 

More complex functional entities like a motion axis can receive control data, perform a 

calculation or action, provide status data, and have different operation modes, including closed-

loop controls. 

There are also functional entities on the process application level representing an entire 

application such as a paper machine or a boiler, where the functional entity has multiple nested 

sub functional entities. 
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Figure 3.11: Overview of the FunctionalEntity information model. 

OPC UA Field level exchange. It describes the field devices, their attributes and functionalities 

provided by them in a domain agnostic way. Therefore, we use the OPC UA FX information 

model as a basis to define capability in UC4. It means, the capability model in UC4 is based on 

OPC UA FX, which is shown in Figure .  

Capability Definition: 

Capability is an implementation-independent description of the function of a resource to 

achieve a certain effect in the physical or virtual world. Capability represents required resource 

functionality from a resources system such as tool, machine, production cell etc. to fulfill a 

production function for a manufacturing process unit. In our view, so defined Capability matches 

the role of FunctionalEntity in OPC UA FX. Therefore, our CapabilityType extends 

FunctionalEntityType as shown in Figure .  

In a general sense, Capability defines an automation function. As such, it may have inputs, 

outputs, configuration parameters, access-rights metadata etc. This information is captured by 

FX FunctionalEntityType, see Figure . FunctionalEntities encapsulate logical functionality, which 

can include function blocks, IO module functionality, drive functionality, sensor functionality, 

actuator functionality, or more complex logical items. From that point of view, FunctionalEntities 

can be used to realize Capabilities. 

The Capability also defines the range of parameters and dependencies or constraints that are 

partially derived from a product definition and partially from the manufacturing process. The 

product definition aspects can be aspects of geometry, tolerance, quality inspection etc. For 

some of this information FX model needs to be extended with other OPC UA Companion 

Specifications and semantic models (ontologies). 

Capability is the key to enable capability-based (continuous) engineering. Capability needs to 

have description in a machine-readable format and in the right level of abstraction.  

Capability, as realized with FX FunctionalEntity, provides the right level of abstraction. It is given 

in a machine-readable format. Moreover, it is standardized by the OPC Foundation. It can be 

extended with other models, e.g., OPC UA Companion Specifications, and as such may enhance 

interoperability across different vendors. As shown in Figure 3.13, capabilities for different 

companion specifications e.g., Robotics, PackML, Machine Vision, Machine Tools etc. can be 

created using the FX capability model which enables interoperability across vendors. 
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Figure 3.12: CapabilityType Definition using OPC UA FX 

 

Figure 3.13: Overview of OPC UA Information models layer cake for OPC UA Capabilities 

As we mentioned before, in SmartEdge project capabilities and Recipes for UC4 are created 

using FX capability model. Here we would like to present an example of a recipe for UC4. 

The sample application that we would like to showcase here is customized production on the 

manufacturing unit with production planning. Using this application, a user can configure and 

customize the product that should be manufactured. The recipe lets the user configure the order 

and it will check if the manufacturing process of the new product can be fulfilled with the existing 

resources available on the unit. If the resources are not available, then they will not be 

manufactured, and the recipe sends a message that the product cannot be manufactured. The 

recipe is illustrated in Figure . 
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Figure 3.14: Sample Recipe for UC4 

3.3 DOMAIN SPECIFIC ONTOLOGIES  
In this section we review few domains specific ontologies that are relevant for SmartEdge use 

cases. Our aim is to re-use existing, well defined domain specific ontologies as much as possible. 

The static knowledge about an environment can also be modelled using existing domain 

ontologies. If the suitable ontologies do not exist then new ontologies can be introduced in order 

to model the external knowledge or static knowledge that is required for the SmartEdge use 

cases (this addresses the requirements CSI-005 and CSI-008). These ontologies can be used in 

SmartEdge in multiple ways. They can be layered on top of device semantic descriptions; they 

can be used in a recipe to define capability constraints. They can be used in SmartEdge ontology 

(for example to model specific characteristics of an AMR.) etc., to allow domain specific concepts 

to be modelled in the knowledge graph, this addresses the requirement CSI-015.  

  

3.3.1 The IEEE Standard for Autonomous Robotics 

The IEEE Standard for Autonomous Robotics (AuR) Ontology (IEEE, IEEE Standard for 

Autonomous Robotics (AuR) Ontology, 2022) extends the Core Ontology for Robotics and 

Automation (CORA) (IEEE, IEEE Standard Ontologies for Robotics and Automation, 2015) to 

provide a standardized representation of knowledge specific to autonomous robotics. This 

extension enables the clear identification and understanding of the components essential for 

building autonomous systems capable of functioning in diverse environmental conditions. The 

components of an ontology include individuals, classes, relations, and axioms, typically 

expressed in first-order logic (FOL) or web ontology language (OWL). In IEEE standard, ontologies 

are categorized as upper-level, reference, domain, or application, as illustrated in Figure 3.15.  

 

Figure 3.15 IEEE Standard for Autonomous Robotics (AuR) Ontologies Classification 
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Upper-level Ontology:  

• Focuses on widely applicable concepts like object, event, state, and quality, along with 

high-level relations.  

• Addresses fundamental and generic concepts, applicable across various domains. 

Reference Ontology:  

• Concentrates on a specific discipline, ensuring high reusability within that field.  

• Provides a standardized framework for a particular field. 

Domain Ontology:  

• Focuses on a more limited area, such as autonomous or collaborative robotics.  

• Contains vocabulary specific to a domain, covering concepts, relationships, activities, 

theories, and principles.  

• Specializes concepts from upper-level and reference ontologies. 

Application Ontology: 

• Includes definitions necessary for modeling knowledge in a particular application, such 

as a robot grasping system or SLAM. 

• Tailored to the requirements of a specific application domain. 

• Provides a practical implementation of ontological concepts for real-world use. 

 

In SmartEdge, AuR is used to model data elements related to SLAM (Simultaneous Localization 

and Mapping). SLAM uses collaborative maps to capture the surroundings and determine the 

positions of multiple robotics in UC3. Leveraging ontologies from the AuR ontology, particularly 

application ontologies, SmartEdge enhances SLAM by providing a tailored knowledge 

representation for the simultaneous localization and mapping process, called Semantic SLAM. 

These ontologies ensure precision in modelling intricate relationships and concepts, contribute 

to interoperability through reference standards, and facilitate seamless integration with various 

robotics-related disciplines.  Semantic SLAM would include following ontology-based data 

elements (Cornejo-Lupa, 2021): 

▪ Robot Information: Captures the robot's characteristics, capabilities, and location 

within the environment. 

▪ Environment Mapping: Represents the surrounding objects, their features, and their 

positions. 

▪ Timely Information: Records the robot's movements and the duration of its actions. 

▪ Workspace Information: Defines the overall characteristics of the mapped area and 

domain-specific entities. 

3.3.2 OPC UA Information Model for Robots 

The OPC UA Robotics Companion Specification extends OPC UA standard to the field of robotics. 

3, 4 In essence, it provides a framework for seamless communication and integration between 

different robotic devices and systems. It defines standardized methods for exchanging 

information related to robotic capabilities, status, and control commands. This specification 

 
3 https://opcfoundation.org/markets-collaboration/robotics/ 
4 https://reference.opcfoundation.org/Robotics/v100/docs/ 

https://opcfoundation.org/markets-collaboration/robotics/
https://reference.opcfoundation.org/Robotics/v100/docs/


D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908 

 

45  

 

aims to create a common language for robots and automation systems to understand and 

interact with each other, promoting a more flexible and collaborative industrial environment. 

The OPC UA Robotics Companion Specification includes an Information Model that serves as a 

structured representation of the data and functionalities related to robotics within the OPC UA 

framework. 

The Information Model defines a standardized way to represent information about robotic 

devices, their components, capabilities, and states. It organizes data into a hierarchical 

structure, allowing for a clear and consistent description of the robotic system. This model 

covers aspects such as kinematics, dynamics, and other relevant properties of robots. 

By using the OPC UA Information Model, robotic devices can share a common understanding of 

their environment and capabilities. This enables seamless communication between different 

robotic systems, as well as with higher-level automation and control systems. It promotes 

interoperability by ensuring that all devices adhere to the same data representation standards, 

fostering easier integration and collaboration in industrial settings. 

3.3.3 OPC 30050: PackML - Packaging Control 

The OPC UA PackML (Packaging Machine Language) Companion Specification5 extends the OPC 

UA standard to the domain of packaging machinery, providing a standardized way for these 

machines to communicate and integrate within industrial systems. It provides the following 

models for packaging machinery; however it can be used to define communication between 

machines in a manufacturing unit (which may not be packaging machines). For example: 

communication between different modules in the unit, communication between a conveyor belt 

and a module etc. 

State Model: 

Defines a standardized state model for packaging machines based on the PackML state model. 

Represents different states of the packaging machine, such as Idle, Starting, Execute, Stopping, 

and Aborting. 

Information Model: 

Describes the structure and semantics of data related to packaging machines. 

Includes information about production data, equipment status, and other relevant parameters. 

Hierarchical organization for clear representation and understanding of the machine's 

components and their relationships. 

Methods: 

Specifies standardized methods for controlling and interacting with the packaging machine. 

Methods include commands for starting, stopping, resetting, and aborting the machine, among 

others. 

Event Model: 

Defines events and alarms related to the packaging machine's operation. 

 
5 https://reference.opcfoundation.org/PackML/v101/docs/ 

https://reference.opcfoundation.org/PackML/v101/docs/
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Provides a standardized way to notify systems about changes in state, errors, or other significant 

occurrences. 

Data Types: 

Specifies data types that represent common concepts in packaging machinery, ensuring 

consistency in data exchange. 

OPC UA PackML Information Model: 

Production Data: 

Includes information about production counts, speeds, and other performance metrics. 

Equipment Status: 

Describes the current status of the packaging machine, such as running, stopped, or in an error 

state. 

Material Status: 

Covers information related to materials used in the packaging process, including availability and 

consumption. 

Job Data: 

Provides details about the current job being executed by the packaging machine, including job 

ID, description, and progress. 

Performance Metrics: 

Encompasses data related to the efficiency and effectiveness of the packaging machine, such as 

OEE (Overall Equipment Effectiveness) parameters. 

By incorporating the OPC UA PackML Companion Specification and its detailed Information 

Model, packaging machines can communicate seamlessly with other devices and systems, 

enabling better coordination and control within industrial automation environments. 

3.3.4 OPC 40100-1: Machine Vision - Control, Configuration Management, Recipe 

Management, Result Management 

A machine vision system is any computer system, smart camera, vision sensor or even any other 

component that has the capability to record and process digital images or videostreams for the 

shop floor or other industrial markets, typically with the aim of extracting information from this 

data. Digital images or video streams represent data in a general sense, comprising multiple 

spatial dimensions (e.g., 1D scanner lines, 2D camera images, 3D point clouds, image sequences, 

etc.) acquired by any kind of imaging technique (e.g., visible light, infrared, ultraviolet, x-ray, 

radar, ultrasonic, virtual imaging etc.). With respect to a specific machine vision task, the output 

of a machine vision system can be raw or pre-processed images or any image-based 

measurements, inspection results, process control data, robot guidance data, etc. Machine 

vision therefore covers a very broad range of systems as well as of applications. 
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The OPC UA Machine Vision companion specification 67  supports these broad range of 

applications mentioned above. It provides an information model to define the data structures 

to support these applications of a machine vision system. The description covers all aspects 

relevant for operation.  

Interaction of the client with the vision system  

A vision system usually has the role of an OPC UA server, i.e. its states are exposed via an OPC 

UA server. This is what in this specification is described and defined. The client system can 

control the vision system via OPC UA. The vision system may also be controlled by a different 

entity through a different interface. The vision system reports important events – such as 

evaluation results and error states – automatically to a subscribed client. However, the client 

can query data from the vision system at any time.  

 

State Machine 

The state machine model is an abstraction of a machine vision system, which maps the possible 

operational states of the machine vision system to a state model with a fixed number of states. 

Each interaction of the client system with the vision system depends on the current state of the 

model and the state and capabilities of the underlying vision system. State changes are initiated 

by method calls from the client system or triggered by internal or external events. They may also 

be triggered by a secondary interface. Each state change is communicated to the client system. 

 

Recipe Management 

The properties, procedures and parameters that describe a machine vision task for the vision 

system are stored in a recipe. Usually there are multiple usable recipes on a vision system. This 

specification provides methods for activating, loading, and saving recipes. Recipes are handled 

as binary objects. The interpretation of a recipe is not part of this specification. For a detailed 

description of Recipe Management, please refer to B.1. Result Transfer The image processing 

results are transmitted to the client system asynchronously. This transmission includes 

information on product assignment, times, and statuses. The detailed data format of a result is 

not included in this specification.  

 

Error Management 

There is an interface for error notification and interactive error management. 

3.3.5 Domain Models for Smart Traffic 

We have adopted the following ontologies to define a customized domain-specific semantic 

model for real-time traffic management in Use Case 2. The ontology diagrams together with the 

object naming scheme are presented in D5.1 [8. 

• The components defined by the ASAM OpenDRIVE standard [9] (not an ontology) can be 

used in our use-cases to describe the road network as a composition of interconnected 

individual sections. Elements include road-segments, lanes, junctions, and features such 

 
6 https://reference.opcfoundation.org/MachineVision/v100/docs/ 
7 https://opcfoundation.org/markets-collaboration/machine-vision/ 
8 SmartEdge - D5.1 Design of Low-code Programming tools for edge intelligence.docx 

9 https://www.asam.net/standards/detail/opendrive/ 

https://reference.opcfoundation.org/MachineVision/v100/docs/
https://opcfoundation.org/markets-collaboration/machine-vision/
https://cnitit.sharepoint.com/:w:/r/sites/smart-edge/Documenti%20condivisi/General/WP5/D5.1%20Design%20of%20low-code%20programming%20tools%20for%20edge%20intelligence/SmartEdge%20-%20D5.1%20Design%20of%20Low-code%20Programming%20tools%20for%20edge%20intelligence.docx?d=w5988f13ca1c24515827550df5a64f2f0&csf=1&web=1&e=dkatil&nav=eyJoIjoiOTMwMjQ2MzI0In0
https://www.asam.net/standards/detail/opendrive/
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as signals. In addition to the linked road segments, the lanes between roads are also 

connected which can be used in simulated traffic. 

• At the same time, ASAM OpenXOntology [10] and ASAM OpenLABEL are being developed 

in parallel to define ontologies for road network and traffic, and to define taxonomies 

for labelling of the network elements.  

• In addition, H. Qiu et al have proposed a non-standard but well-researched ontology 

highly relevant to UC-2, called “Ontology-based digital map integration“ [11￼] 

• Finally, to include our traffic sensors and edge devices in the model, SOSA [12] and SSN 

[ 13 ] OWL ontology standards (by W3C) can be used to describe sensors, sensing, 

measurement capabilities of sensors, the sensing observations results, and sensor 

deployments. SOSA is the result of rethinking SSN. 

3.4 STANDARDIZED SEMANTIC INTERFACES 
In this section we review few standards and open-source implementations, which will be used 

in the implementation of Standardized Semantic Interfaces, implementing the functional 

requirement CSI-002.  

3.4.1 OPC UA 

OPC Unified Architecture (OPC UA) is a set of standards14 designed as an interoperability in 

Industrial Automation. OPC UA includes a platform independent service-oriented architecture 

and a cross-platform standard for data exchange from sensors to cloud applications (IEC 62541). 

It is developed by the OPC Foundation. It ranges from field devices up to cloud-based 

infrastructure, regardless of diverse hardware platforms and operating Systems. 

While there are numerous communication solutions available, OPC UA has key advantages: 

security model, multiple fault-tolerant communication protocols, and an information modelling 

framework (semantics) that allows application developers to represent their data in an object-

oriented way. 

OPC UA has a broad scope which aims to offer economies of scale for application developers. 

This means that a larger number of high-quality applications at a reasonable cost is available. 

For example, when combined with semantic models such as Asset Administration Shell, OPC UA 

makes it easier for end users to access data via generic commercial applications. 

OPC UA defines a protocol to exchange the data in accordance with the proposed architecture. 

The standard addresses a lot of aspects such as platform independence, communication 

patterns, security, extensibility, and so on.  

OPC UA standardizes a set of comprehensive information models. OPC UA information models 

(companion specifications) are organized with a layered approach, so that each layer provides 

 
10 https://www.asam.net/standards/asam-openxontology 

11 https://www.semantic-web-journal.net/content/ontology-based-digital-map-integration 

12 https://www.w3.org/2015/spatial/wiki/SOSA_Ontology  

13  https://www.w3.org/2005/Incubator/ssn/wiki/SSN 

https://www.w3.org/2005/Incubator/ssn/ssnx/ssn 

14 https://reference.opcfoundation.org/ 

https://www.asam.net/standards/asam-openxontology/
https://www.semantic-web-journal.net/content/ontology-based-digital-map-integration
https://www.w3.org/2015/spatial/wiki/SOSA_Ontology
https://www.w3.org/2005/Incubator/ssn/wiki/SSN;
https://www.w3.org/2005/Incubator/ssn/wiki/SSN;
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn;
https://reference.opcfoundation.org/
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additional information, ranging from basic OPC UA concepts up to domain-specific information, 

even vendor-specific information, and so forth. It is not a single model, but rather an information 

stack that defines how the data is looked up, read, and written, and further, how methods are 

executed, notifications on data and events are handled, and so forth. Companion specifications 

exist for various domains such as, for example, for robotics, product packaging, computer vision, 

machine tools, and many more.    

3.4.2 W3C WoT 

Digital Twins are software abstractions for the IoT.  W3C has released the standard called Web 

of Things (WoT), which enables interoperability across IoT platforms and application domains. 

The standard provides the concept of Digital Twin for things connected to the Web. It includes 

the following specifications: WoT Architecture, WoT Thing Description, WoT Discovery, WoT 

Security, and WoT Scripting API.  

In the scope of this project, we will focus mostly on WoT Thing Description (TD). A TD provides 

general metadata of a Thing, as well as metadata about its functions (Interactions), protocol 

usage, security mechanisms, links to other Things etc. Thing’s Interactions are specified in a so-

called Interaction Model. The model defines three types of so-called Interaction Affordances: 

Property, Action, and Event. They can be manipulated via a RESTful API. 

TD Properties can be used for sensing and controlling parameters, such as getting the current 

value or setting an operation state. They expose an internal state of a Thing (its data points) that 

can be, e.g., directly retrieved via GET method of the HTTP protocol or optionally modified via 

HTTP’s PUT method. 

TD Actions can model invocation of physical (and hence time-consuming) processes, but can also 

be used to abstract RPC-like calls of existing platforms. They are functions that may manipulate 

an internal state of the Thing, e.g., to change states that are not exposed via Properties, 

modifying multiple Properties, change Properties over time or with a process that should not be 

disclosed. HTTP’s POST is the default method for invoking actions on a URI resource. 

TD Events provide a mechanism that enables a Thing to asynchronously push messages. They 

are used for the push model of communication where notifications, discrete events, or streams 

of values are sent asynchronously to the receiver. These messages are not stating but rather 

state transitions (events). Events could be triggered by internal state changes that are not 

exposed as Properties. Events must follow a consistent delivery approach to ensure that all 

occurred events are delivered. To that end subscriptions are utilized with HTTP’s long polling 

sub-protocol and enable a sensor to provide a steady feed of data. 

A Thing Description is extendable by additional vocabulary terms and ontologies. This 

mechanism is important when creating domain-specific TDs. For example, it is possible to use a 

domain-specific ontology (see Section 3.3) to enrich a TD with a standardized semantic 

vocabulary. A TD must be represented in JSON-LD when additional vocabularies are used.  

3.4.3 DDS 

The Data Distribution Service (DDS) is an open standard middleware protocol designed for high-

performance, distributed, real-time systems. DDS provides a publish-subscribe model for 

sending and receiving data, events, and commands among the nodes of a network. It is 

particularly suited for systems where timely and efficient delivery of data is crucial. The protocol 

defines a high-level API and data model that abstracts the details of network programming, 

allowing developers to focus on the logic of their applications rather than the intricacies of 
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network communication. DDS is widely used in industries such as defence, air traffic control, 

robotics, and large-scale Internet of Things (IoT) applications, and is a protocol specification 

maintained by the Object Management Group (OMG). There are a number of commercial and 

open-source implementations including: RTI Connext DDS, eProsima Fast DDS, Eclipse Cyclone 

DDS, and OpenDDS. 

ROS, which stands for Robot Operating System, is a flexible and collaborative framework for 

building complex robotic systems. The original version of ROS used its own publisher-subscriber 

message-passing interface for communication between different parts of a robot or between 

different robots. The message-passing interface is a type of Message Oriented Middleware 

(MOM) that sits on top of the network layers, such as TCP/IP or cross memory services, if running 

on the same host. The latest version of ROS, ROS2, replaced its own middleware 

communications bus with DDS.   

DDS works well on low latency low packet loss networks supporting real-time systems, but can 

struggle when operating over low bandwidth or high latency networks, such as WiFi. Here 

sometimes unreliable networks are unavoidable, e.g., for mobile robots running ROS 2. In these 

circumstances DDS can be paired with a more resilient MOM designed to operate consistently 

over these types of networks. In these cases, DDS is used for the local real-time control and 

communications, where reliable low latency is required between individual ROS2 nodes, and the 

more resilient MOM used for high-level coordination and data transfer communications 

between robots, i.e., each robot is a separate DDS fabric interconnected by another resilient 

MOM.     

3.4.4 Zenoh 

Zenoh is a Message Oriented Middleware (MOM) for distributed systems that need to operate 

over low bandwidth high latency networks, such as WiFi, and provides features such as 

discovery, routing, and data storage. It is designed to be highly extensible and composable, 

allowing developers to select the features they need for their application and develop their own 

custom MOM extensions. Zenoh is written in Rust, but also has a C implementation called Zenoh 

Pico that is designed to run on micro-controllers, such as Arduino.    

The Zenoh ROS Bridge forwards ROS system messages to other systems connected to Zenoh. It 

is possible for the bridge to subscribe to ROS topics, receive those messages and forward them 

to the other systems. The same works in reverse for the ROS system to receive published 

messages. Configuring the topics and messages may be a manual process, but the number of 

message types that would need to be forwarded over the bridge would be far less that within 

the ROS system itself.  

It is possible to use Zenoh as a bridge between multiple ROS systems. This might seem to be 

counterintuitive, as we could connect them together directly using a ROS bridge, but connecting 

two ROS systems can create namespace conflicts. Zenoh handles conflicts by automatically 

adding a scope prefixing to topics and messages, which avoids namespace conflicts. It can even 

support wildcards for the scope prefix to receive all messages on a topic regardless of the ROS 

system that published the message. The Zenoh ROS bridge uses the Cyclone DDS 

implementation of DDS, and other DDS implementations may not be supported.  

If a Zenoh router is installed in the Zenoh communications fabric, applications can communicate 

in several different modes. Routers are typically installed to communicate over more complex 

network topologies, the routers forming a backbone for the Zenoh communications fabric. The 
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applications can communicate either in client mode where all communication goes through the 

Zenoh router, or peer mode where applications communicate peer-to-peer on the local 

multicast network but through the router to reach applications on more distant parts of the 

fabric.       

3.4.5 C-V2X 

At its current stage, UC-2 has envisioned several sources of data to monitor and control real-

time traffic at intersections: a) Radars, b) Cameras, c) Traffic Light Controller, d) V2I messages 

(measurement data from instrumented vehicles). 

Radars send raw data (lacking semantic annotation) to the Sensor Node edge device installed 

near each intersection. Sensor Node converts the raw sensing data into JSON string with use-

case-specific semantic annotations. These converted messages can be sent to other smart traffic 

nodes via custom MQTT topics. The JSON string messages are also ready to be converted to 

SmartEdge common ontology format that is understood by other SmartEdge nodes.  

Connected vehicles and the infrastructure (including Sensor Node, Controller Node) 

communicate using standard V2X protocols such as SPaT, MAP, BSM, CAM, that do not hold 

semantic annotations. These messages are originally in binary format to achieve high 

performance in networking and computation. For instance, the V2X roadside units (RSUs) enable 

Sensor Nodes and Controller Nodes to receive V2I BSM/CAM messages from the cars moving 

near each intersection, providing information about car situations such as accurate geolocations 

and speeds. On the other hand, the onboard units (OBU) installed inside connected vehicles 

enable them to receive SPaT and MAP messages from a Controller Node to understand road 

geometry, rules and suggested driving actions. Similar to the raw radar data, the V2X messages 

need to be converted from binary non-semantic format to the semantic format defined in 

SmartEdge and presented as JSON and JSON-LD/RDF strings, before they can be used in the 

context of UC2. Therefore, converter components need to be implemented as well. The 

proprietary V2X OBUs and V2X RSUs considered for the project already come with SDK for 

converting the received binary messages into JSON strings. Having this conversion process, it 

will be possible for us to compare and combine the V2I messages with the object detection data 

from radars and cameras. 

Finally, to brief on the V2X standards, the SAE J2735 [15] and ETSI EN 302 637-2 [16] define 

standard V2X message types and their data format. SAE’s BSM stands for basic safety message, 

where vehicles periodically communicate their state (location, speed, etc.) at 10Hz to support 

safety applications such as collision avoidance. Similarly, ETSI’s Cooperative Awareness Message 

(CAM) [17] though having a different message format, has the same application as BSM by 

communicating vehicle information needed for safety applications. On the other hand, Signal 

Phase and Timing (SPaT) messages are sent by the Control Nodes that also control traffic signal 

lights. SPaT messages inform the traffic signal phase and timing state to the nearby vehicles. In 

addition, Control Nodes can send MAP messages to communicate the road lanes information at 

 
15 https://www.standards.its.dot.gov/Factsheets/Factsheet/71 

16  https://www.en-standard.eu/etsi-en-302-637-2-v1-3-0-intelligent-transport-systems-its-

vehicular-communications-basic-set-of-applications-part-2-specification-of-cooperative-

awareness-basic-service/ 

17 https://forge.etsi.org/rep/ITS/asn1/cam_en302637_2 

https://www.standards.its.dot.gov/Factsheets/Factsheet/71
https://www.en-standard.eu/etsi-en-302-637-2-v1-3-0-intelligent-transport-systems-its-vehicular-communications-basic-set-of-applications-part-2-specification-of-cooperative-awareness-basic-service/
https://www.en-standard.eu/etsi-en-302-637-2-v1-3-0-intelligent-transport-systems-its-vehicular-communications-basic-set-of-applications-part-2-specification-of-cooperative-awareness-basic-service/
https://www.en-standard.eu/etsi-en-302-637-2-v1-3-0-intelligent-transport-systems-its-vehicular-communications-basic-set-of-applications-part-2-specification-of-cooperative-awareness-basic-service/
https://forge.etsi.org/rep/ITS/asn1/cam_en302637_2
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each intersection as well as to outline lane geometry as closed polygons. Each lane record can 

include lane type, connecting lane, related signal group, and allowed manoeuvres at the stop 

line implying traffic rules. 

3.4.6 MQTT with SparkPLug B 

MQTT18 is an OASIS standard. It is a lightweight, publish/subscribe messaging protocol ideal for 

connecting remote devices (e.g., in IIoT applications). MQTT has a small code footprint. This 

design allows data to move within a challenging communications environment with resource 

constraints or limited network bandwidth. MQTT is widely used for device messaging in IIoT 

communications, with millions of devices leveraging its capabilities. 

Publish–subscribe19 is a messaging pattern where publishers categorize messages into classes 

that are received by subscribers. This is contrasted to the typical messaging pattern model 

where publishers send messages directly to subscribers. Similarly, subscribers express interest 

in one or more classes and only receive messages that are of interest, without knowledge of 

which publishers, if any, there are. 

Main characteristics of MQTT are: 

• Lightweight - Publish–subscribe architecture is decoupled between a broker and clients. 

MQTT clients are very small and can be implemented on small microcontrollers. Brokers 

can be implemented on different kinds of machines (on edge or cloud).  MQTT message 

headers are small to optimize network bandwidth. 

• Reliable – Messages are delivered within 3 defined quality of service levels: 0 - at most 

once, 1- at least once, 2 - exactly once. 

• Bi-directional Communications - MQTT enables messaging between device to cloud and 

cloud to device.  

• Support for Unreliable Networks - MQTT supports persistent sessions, which reduces 

the time to reconnect when an IoT device is connected over unreliable cellular networks. 

• Scalability - MQTT can scale to connect with millions of IoT devices. 

• Security - MQTT makes it easy to encrypt messages using TLS and authenticate clients 

using modern authentication protocols, such as OAuth. 

MQTT effectively enables device-to-device communication. However, MQTT messaging 

provides zero context about shared data. MQTT is effective in sharing IoT data, but it is less 

effective in the management of data, i.e., in managing which data needs to be shared. Mere 

provision of topic names with some basic structures of topics is not sufficient in complex IIoT 

applications. The payload can be anything and the message can be anywhere. Thus, it is a 

challenge to find out what data (exchanged over MQTT) originates from which device, and in 

which context this data is to be used. 

Sparkplug20 has emerged to extend MQTT for this purpose. It provides the context of industrial 

data, which is necessary for IIoT architectures and systems when exchanged via MQTT. 

Therefore, Sparkplug is seen as the main building block in MQTT, which extends operational 

technology (OT) data with context for seamless integration with information technology (IT). 

 
18 https://mqtt.org/  
19 https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern  
20 https://sparkplug.eclipse.org/   

https://mqtt.org/
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://sparkplug.eclipse.org/
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Sparkplug is an open-source specification21 hosted at the Eclipse Foundation, which aims in the 

future to become an ISO standard. 

Sparkplug B introduces the structure for MQTT topics. The structure enables logical grouping of 

messages, and thus improves the data management. Payloads are binary messages encoded in 

Google Protocol Buffers22. It is also possible to use JSON encoding (for human representation). 

User defined data types (UDTs) can be defined via special templates. This is said to be a 

mechanism for defining semantic structures that, for example, can be found OPC UA 

companions too. 

3.5 STANDARDIZED SEMANTIC INTERFACES IN SMARTEDGE 
SmartEdge enables seamless integration of SmartEdge devices via standardized semantic 

interfaces. Standardized semantic interfaces provide a common way to access the devices' data 

from the application level. For the different use-cases covered by the project, there is a need for 

seamless communication across diverse protocols, such as OPC UA, MQTT, and DDS. Ensuring 

interoperability at the protocol level is essential to make use of these interconnected systems. 

To overcome the challenges of multi-protocol device communication and enable 

interoperability at the protocol layer, we envision using a middleware solution that unifies the 

messages across different protocols as shown in Figure  The messages from different protocols 

being unified at the middleware layer allow the dataflow vertically and horizontally and, also, 

enable a unified access to the data from the application layer. 

 
21 https://www.eclipse.org/tahu/spec/sparkplug_spec.pdf  
22 https://protobuf.dev/  

https://www.eclipse.org/tahu/spec/sparkplug_spec.pdf
https://protobuf.dev/
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Figure 3.16: Standardized Semantic Interfaces in SmartEdge 

Middleware is seen as a mediation layer for the devices, which communicate MQTT, DDS, or 

middleware-specific protocol. On top, Web of Things Thing Description (WoT TD) will be utilized 

as a machine-readable standardized metadata description of the devices, their data and 

services. WoT TD provides detailed information about the capabilities, properties, and 

interactions that a device offers. 

OPC UA-enabled devices make use of information modelling features of OPC UA. SmartEdge 

relies on OPC UA Field eXchange (OPC UA FX) specifications, which target field device 

interoperability in the industrial automation domain. OPC UA FX provides a common field 

component model (information and interfaces) alongside an information exchange model.  

In order to achieve the interoperability between the OPC UA-enabled devices and the 

middleware, OPC UA FX messages can be mapped to MQTT Sparkplug B specification. With that 

the OPC UA-enabled devices will be integrated at the middleware layer to the rest of the system. 

For the semantic description of the data, SmartEdge will make use of domain-specific ontologies, 

as well as of the OPC UA companion specifications, which define specific data types within the 

OPC UA information model. The companion specifications are typically developed for particular 

domains, devices, or applications to ensure interoperability and data consistency. 

The use case data models, as well as the WoT TDs and OPC UA information model, describing 

the devices, will be the basic building blocks for defining devices' capabilities and skills, used to 

create the SmartEdge recipes. Generic representation of devices' skills and capabilities will be 

fed into the low-code toolchain, where the recipes will be created and executed. Low-code 

runtime then executes the recipe by interacting with the middleware. 
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Table 3.12: Technologies applied in SmartEdge Various Use Cases 

UC Communication protocol Serialization format Semantics 
1 W3C WoT (different 

protocols) 
RDF Turtle, 
JSON/JSON-LD 

(Use-case specific 
ontologies) 

2 C-V2X/ETSI-G5, 
MQTT/NATS 

JSON/JSON-LD Smart Traffic Ontology 

3 DDS, Zenoh ROS2 Binary, JSON-LD Robotics Ontology 

4 OPC UA XML OPC UA FX and OPC UA 
companion specifications 

5 BLE, DDS, MQTT JSON Healthcare Ontology 
 

Table 3.12 summarizes various technologies used at different levels in SmartEdge use cases.  

In Use Case 1, W3C WoT and Web RTC will be employed at the communication protocol level. 

Serialization will be done using RDF Turtle and JSON/JSON-LD. Despite the absence of a specific 

information model for semantics, messages between vehicles are expected to convey the 

intention of vehicles and their states, defined in a domain-specific ontology. 

For Use Case 2, the term Smart Traffic Node refers to any of UC2 smart nodes such as Connected 

Vehicle, Sensor Node, or Controller Node. C-V2X and/or ETSI-G5 communication protocols are 

utilized for V2V and V2I communication among the vehicles and the fixed infrastructure nodes, 

while NATS publish/subscribe handles data collection and service API communication. UC2 uses 

NATS only internally, while a “NATS to MQTT interface” handles compatibility with SmartEdge 

middleware so that Smart Traffic Nodes can fully communicate to the middleware via MQTT 

standard. Radar detection of vehicles will be serialized in a vendor-specific binary format, while 

V2X message types will use standard binary formats like SPAT, CAM, CPM, MAP. Sensor Node 

and Controller Node convert binary V2X and radar messages into semantic formats so that the 

data from these nodes can be serialized in JSON/JSON-LD. 

Use Case 3 will employ DDS for intra-robot communications and Zenoh as middleware for inter-

robot and edge device communications. ROS2 will use a binary format for communication over 

DDS directly between DDS nodes. Whilst there is no official ROS2 message format, several 

hundred of the most common messages are available online 23. Messages flowing between 

robots and edge devices over the Zenoh are SmartEdge or application specific messages and are 

formatted in JSON-LD. With that, each node specifies the message types it supports, but there 

is no formal ontology specification. The control and coordination messages passed over Zenoh 

between robots and other edge devices as either SmartEdge messages or application specific 

messages. 

In Use Case 4, OPC UA will serve as the communication protocol for machine-to-machine 

communication, with OPC UA FX enabling interoperability between components and describing 

devices' capabilities. Additional domain specific OPC UA companion specifications will be utilized 

to describe the data at the semantic level. 

For Use Case 5, BLE, DDS, or MQTT will be used for communication. Data will be serialized in 

JSON and possibly in OMG IDL binary format. The healthcare ontology will be employed for 

semantics. Messages will follow a generic configuration with specific sub-models/templates 

 
23 https://github.com/ros2/common_interfaces 

https://github.com/ros2/common_interfaces


D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908 

 

56  

 

based on the situation (e.g., discovery, registration, negotiation, data-streaming). The UC5 

knowledge graph will provide details on dynamics and data representation. 
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4 DATAOPS TOOL FOR SEMANTIC MANAGEMENT OF THINGS AND 

EMBEDDED AI APPS 

This chapter reports the design of the SmartEdge DataOps toolbox supporting the continuous 

integration of things and applications through the standardized semantic interfaces discussed in 

Chapter 3. The objective of the DataOps toolbox is to provide a set of technologies to perform 

data integration from different sources with a specific focus on performance and scalability 

requirements for both cloud and edge environments. Moreover, in line with the objectives of 

the SmartEdge solution the design of the DataOps toolbox focuses on low-code approaches to 

facilitate the configuration and reusability across different use cases. 

The content of the chapter is structured as follows: 

• Section 4.1 discusses the relevant requirements for the design of the DataOps toolbox 

considering inputs from SmartEdge deliverable D2.1; 

• Section 4.2 provides an overview of the relevant state-of-the-art focusing on data 

interoperability solutions enabled by a declarative and low-code approach; 

• Section 4.3 describes the proposed design for the DataOps toolbox in terms of 

components identified and relevant technologies for its implementation in SmartEdge 

according to the defined requirements; 

• Section 4.3 outlines a preliminary analysis on how the designed DataOps toolbox can 

support the SmartEdge use cases. 

4.1 REQUIREMENTS FOR THE DATAOPS TOOLBOX 
This section discusses the requirements for the DataOps Toolbox considering the ones identified 

in D2.1 for the Continuous Semantic Integration solution and the analysis of the SmartEdge use 

cases. The requirements, reported in Section 2, are associated with a need for enabling data 

interoperability among different nodes composing a swarm.  

4.1.1 Data Interoperability 

The issue of data interoperability is a significant concern when operating within a multi-

stakeholder ecosystem comprising diverse actors [Sadeghi20]. Similarly, within a swarm there is 

a need for data interoperability among diverse nodes that employ heterogeneous data formats, 

specifications, and semantics. The ability to exchange data without any loss of meaning among 

communicating parties is an essential objective, but it is notoriously challenging to achieve also 

due to: 

• heterogeneous information systems that communicate using different protocols and by 

exposing different interfaces (cf. requirements from D2.1 HP-001, HP-005, HP-006, HP-

007, HP-008, HP-009, HP-011, HP-014, LC-009, CSI-001).  

• heterogeneous data formats with varying semantic interpretations employed by 

multiple actors/nodes in the same domain (cf. requirements from D2.1 LC-015, CSI-002, 

CSI-008, CSI-013, CSI-014). This phenomenon may arise due to several factors that make 

the establishment of standards difficult, for example, the persistence of legacy 

applications or the usage of proprietary data formats. 

While a message conversion process can offer a valid solution to define transformations across 

data formats, the integration of such processes considering different data sources and sinks is 
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something that requires a case-by-case analysis and cannot be solved by a single solution. As an 

example, to achieve interoperability between a Device A that outputs JSON data and a second 

Device B that consumes CSV data it is not enough to be able to convert a JSON payload into a 

CSV payload. Device A may only be capable of transmitting data using a Remote Procedure Call 

protocol while Device B may only be capable of receiving data through a HTTP API. 

To achieve data interoperability, we thus need to address two main challenges reflecting the 

first two interoperability layers in the European Interoperability Framework (EIF) Toolbox24: 

• heterogeneous interface integration to guarantee technical interoperability (i.e., the 

possibility of a data exchange between two systems) through standardized interfaces, 

and  

• payload conversion to guarantee semantic interoperability (i.e., ensure that the target 

node can understand the message received and act appropriately) through 

standardized semantics.  

The DataOps toolbox has the objective of enabling data interoperability between 

heterogeneous structured data sources by leveraging the standardized semantic interfaces 

discussed in Section 3.  

To identify more specific requirements for the DataOps tool, we analyse the types of data 

exchanges that can be implemented within a SmartEdge swarm between different types of 

nodes as discussed in deliverable D2.1. Figure 4.1 provides a diagram representing the different 

cases identified. 

 

Figure 4.1: Types of data exchanges within a swarm 

The simplest case is related to SmartEdge-based data exchanges between smart-nodes, i.e., 

nodes that execute a SmartEdge-enabled component. In this case, the nodes are directly capable 

of processing and exchanging the data according to the standardized semantic interfaces 

defined by SmartEdge. The communications between the coordinator/orchestrator of the 

swarm and a smart-node can be an example of SmartEdge-based data exchanges. 

As a second case, we can identify native data exchanges between different types of nodes, i.e., 

also considering brownfield devices. In this case, we assume that two nodes in the swarm are 

 
24 https://joinup.ec.europa.eu/collection/nifo-national-interoperability-framework-observatory/solution/eif-

toolbox/6-interoperability-layers  

https://joinup.ec.europa.eu/collection/nifo-national-interoperability-framework-observatory/solution/eif-toolbox/6-interoperability-layers
https://joinup.ec.europa.eu/collection/nifo-national-interoperability-framework-observatory/solution/eif-toolbox/6-interoperability-layers
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already capable of exchanging data according to common interfaces and semantics and their 

communication should only be configured. As an example, we can consider a set of cameras 

emitting video-streams and a smart-node capable of processing such streams. In this case, once 

the data exchanges between the cameras in a certain swarm and the smart-node are configured 

(e.g., by providing IP addresses of the cameras to the smart-node), then the data are exchanged 

by the nodes at runtime without requiring any intermediary component. A native data exchange 

may also exist between nodes that are already integrated to offer certain functionalities in a 

swarm, e.g., different ROS nodes or an in-cloud backend processing binary messages from IoT 

devices. 

The third case, i.e., the mediated data exchange represents the target of the DataOps toolbox 

and should be enabled for the continuous semantic integration of the nodes involved. In this 

case, two nodes exchange data according to different interfaces and semantics and their 

communication should be enabled by SmartEdge. As an example, we can consider the exchange 

of data from a brownfield device that is not directly supported by a smart-node. For example, 

Node A may deliver messages using MQTT and a custom payload format while the Smart-Node 

1 may have as interface a HTTP API accepting JSON payloads according to a specific schema. In 

this case, the DataOps toolbox should enable both technical and semantic interoperability to 

enable the data exchange among the two nodes. 

It is important to highlight that the same pair of nodes may require different types of data 

exchanges, e.g., the Smart-Node 2 may be capable of exchanging information related to swarm 

coordination with the Smart-Node 1 through a SmartEdge-based data exchange, while requiring 

a mediated data exchange for exchanging structured information received from a brownfield 

device (Node B). 

To generalise, the DataOps toolbox should provide a set of technologies for the implementation 

of mediated data exchanges in different scenarios. The associated requirements are: 

• the retrieval of data from heterogeneous data sources with different interfaces (e.g., 

protocols and interaction mechanisms), 

• the conversion of payloads from one data format and/or data model to another one, 

• the forwarding of the converted data to the target interface. 

In this context, it is important to clarify the distinction between the processing of structured and 

unstructured information. The processing of unstructured information to extract structured 

data, e.g., the processing of a video stream by a machine-learning algorithm for object detection 

and identification, is out of scope of the DataOps toolbox and can be considered as an 

application executed by a certain node that interacts with the unstructured data stream (e.g., 

the video stream) and generates structured information (e.g., a JSON message describing the 

list of objects detected in the video). Considering the provided example, the DataOps toolbox 

can instead support the processing of the structured data generated by the node to guarantee 

data interoperability (e.g., convert the JSON message adopting a common vocabulary for the 

objects detected). For this reason, the fulfilment of requirements CSI-013 and CSI-014 will be 

supported by the DataOps toolbox, if structured data exchanges should be mediated, and/or by 

the solutions developed within WP5. 

4.1.2 Performance and Scalability 

 

For the definition of more non-functional requirements, it is important to consider the following 

categorization that can be applied to the described data exchanges: 
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• Static data exchange: exchange of pre-defined datasets with low volatility such as 

metadata (e.g., self-descriptions) and configurations for a node. 

• Runtime or on-the-fly data exchange: exchange of messages and/or data streams at 

runtime between nodes. 

The two data exchanges are associated with different characteristics and, consequently, 

different needs in terms of performance and scalability [Scrocca21]. On one hand, static data 

exchanges often require the conversion of datasets of larger size with low frequency, thus 

requiring the minimisation of resource usage and scalability in terms of the size of the input. On 

the other hand, runtime data exchanges are usually associated with small-size messages with 

high frequency, thus requiring the minimisation of the latency introduced by the conversion 

process and scalability in terms of concurrent conversion requests. 

The KPIs 2.2 and 2.3 reported in Section 2 target the expected improvements in terms of 

performance and scalability to be demonstrated in SmartEdge considering the baseline results 

discussed by Scrocca et al. in [Scrocca21] terms of conversion time (140 ms conversion time with 

50 KBytes XML payloads) and number of concurrent requests handled per second (100 

requests/s with 50 KBytes XML payload on commodity hardware and considering a single 

converter instance). 

Finally, in the context of SmartEdge an additional constraint is introduced by the types of nodes 

involved in the considered use cases. The resources available for each node, mainly CPUs and 

RAM, should be taken into account for certain edge devices with minimum specifications.  

4.1.3 Deployment 

The term continuous, associated with the semantic integration process, embraces two aspects 

that will be supported by the DataOps toolbox: (i) the discussed enablement of data 

interoperability among nodes with different integration requirements, and (ii) the possibility for 

the data interoperability solution to support deployments either in the cloud or on the edge. 

Indeed, to facilitate a seamless integration between the edge and the cloud, the DataOps 

toolbox should support different deployment possibilities considering different types of devices 

(e.g., hardware and operating system) as well as cloud environments such as container 

orchestrators (cf. requirement from D2.1 HP-018). To facilitate reusability and portability of data 

interoperability solutions developed through the SmartEdge DataOps toolbox, the definition of 

the solution should be as much as possible decoupled from the necessary configuration for its 

deployment. Ideally, it should be possible to reuse with minimal effort the same solution in 

different deployment environments with minimum modifications required. 

4.1.4 Low-code 

The design of the DataOps toolbox should also aim at investigating low-code approaches to 

facilitate the configuration of mediated data exchanges by minimising the amount of code to be 

written and increasing the reusability of already defined solutions (cf. requirement from D2.1 

LC-010). 
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4.2 STATE OF THE ART 

This section provides an overview of the relevant state-of-the-art considered for the design of 

the DataOps toolbox. In particular, we focus on approaches exploiting declarative mappings to 

enable semantic interoperability, and frameworks for data integration that could be used to 

implement solutions for technical interoperability.  

4.2.1 Semantic Interoperability through Declarative Mappings 

Considering different nodes with a semantic harmonisation need, a naïve approach consists in 

the implementation of a point-to-point solution to enable a direct payload conversion between 

each pair of nodes adopting a different data standard (any-to-any approach). However, this 

approach is not scalable and the amount of mappings to be defined increases as 2n(n − 1) with 

n being the number of different standards to be considered.  When integrating different 

software systems that act in the same domain, or more generally share a common set of 

concepts and vocabulary, it is possible to employ a more effective any-to-one centralized 

mapping approach [Vetere05]. This approach reduces the number of mappings required for data 

interoperability enabling a better scalability of the solution. If there are n different formats, the 

number of mappings increases instead as 2n as shown in Figure 4.2. The assumption behind this 

approach is that it is possible to identify a reference conceptual model O, that models the 

common semantics of the data standards considered. Each data standard should be only 

mapped to and from the reference conceptual model. Using an ontology as a reference 

conceptual model, we can offer a valid solution to model the common semantics, as we do in 

SmartEdge, and has the additional advantage of enabling the creation of an interoperable 

knowledge graph during the conversion process between two standards [Scrocca20]. The 

advantages and challenges of such an approach in the context of the Web of Things is also 

discussed in a position paper by Bennara et al. [Bennara20]. 

 

Figure 4.2: Comparison of the any-to-any and any-to-one approaches for interoperability. 

Each of the arrows represented in Figure 4.2 is associated with the definition of a set of rules, 

usually called mapping rules, that enable the conversion of payloads from one data standard to 

another one. 
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The payload conversion can be implemented in different ways. From a literature review 

[VanAssche22] the following categorization emerges: 

• Hard-coded procedures: the data conversion process is defined through code in a 

specific programming language. In this case, data conversion may take place via one-

off scripts or by hard-coding specific conversion rules, known ahead of time, inside of 

another program. An example is a custom Python script that parses a specific JSON 

stream and generates an associated set of RDF triples. The problem with this approach 

is that the data conversion solution becomes difficult to maintain and difficult to reuse. 

• Format-specific mappings: the data conversion process is defined by leveraging a well-

defined mapping language to define conversion rules from a specific data format to a 

target one. An example is the TARQL25 tool for converting CSV files to RDF, using an 

extension of the SPARQL language to define the mapping rules, or the R2RML W3C 

recommendation [Das12] for the mapping from relational dabatases to RDF. The 

downside of format-specific mappings is that they are optimized for a specific data 

format. Converting to and from a variety of formats would require using and 

maintaining a set of different tools, one for each format. 

• Declarative mappings: overcome the shortcomings of the previously presented 

approaches by being implemented in a declarative mapping language. Mapping rules 

are decoupled from the mapping executor and different processors may be used to 

execute the mappings if they conform to the same adopted declarative mapping 

language. Additionally, they are not constrained to a specific data format but can 

convert data to and from various formats. A single solution for the definition and 

execution of the mappings should be learned and maintained. 

Considering an ontology as a reference conceptual model, different declarative mapping 

languages for the conversion of heterogeneous data sources to RDF have been proposed 

[VanAssche22]. These declarative mapping languages can be classified as: 

• dedicated languages based on R2RML [Das12] syntax (RML [Dimou14], D2RML 

[Chortaras18], KR2RML [Slepicka15], R2RML-F [Debruyne16], xR2RML [Michel15]),  

• dedicated languages with custom syntax (Helio Mapping Language [Cimmino22], D-

REPR [Vu19]), 

• repurposed languages based on constraint languages (ShExML [García-González18]), 

extending the ShEx syntax),  

• repurposed languages base on SPARQL 26  syntax: XSPARQL[Akhtar08], Facade-X, 

SPARQL-Generate[Lefrançois16].  

Each mapping language provides at least one mapping processor able to execute the specific 

mappings. 

The most widely used of these declarative mapping languages is the RDF Mapping Language 

(RML)27. RML extends R2RML, by adding support for heterogeneous data sources, such as files 

in the CSV, XML or JSON formats. 

RML works by defining: 

 
25 https://tarql.github.io/  
26 https://www.w3.org/TR/sparql11-overview/   
27 https://rml.io/specs/rml/  

https://tarql.github.io/
https://www.w3.org/TR/sparql11-overview/
https://rml.io/specs/rml/
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• Logical sources can be considered as the input of the mapping process. They can 

reference relational databases or files in one of the supported formats. Depending on 

the type of file, they define how to access data inside of the file in different ways. For 

example, a logical source for a JSON file specifies how it accesses data with the 

JSONPath28 language, while for an XML logical source XPath29 is used. 

• Subject maps which specify how the subject for an RDF triple is to be constructed from 

the source data. This may be either a constant or an expression that depends on the 

input source data. 

• Predicate-Object maps are functions that create a predicate-object association for each 

item from a logical source. These predicate-object links are used in conjunction with 

the subjects generated from subject maps to compose a whole subject-predicate-object 

RDF triple. 

In addition to these core concepts RML allows users to declare logical functions [Meester17] and 

join conditions. Logical functions are declared in RDF by defining their inputs and outputs. Their 

implementation depends on the RML processor that runs the mapping, but they should follow 

the contract of the logical function to assure predictable behaviour. Join conditions are instead 

necessary when the output of the mapping process depends on multiple input logical sources. 

The join conditions are used like in conventional relational database systems to link together 

data from different sources. 

Figure 4.3 illustrates the transformation process of an input CSV file into the output RDF 
format through the application of an RML mapping. The depicted RML mapping constructs 
subjects for the RDF triples using a subject map that extracts information from the "id" column 
in the CSV file. As indicated in the subject map, each subject is defined to be of type (utilizing 

 
28 https://goessner.net/articles/JsonPath/  
29 https://www.w3.org/TR/xpath-3/  

Figure 4.3: Example of an RML mapping from CSV to RDF 

https://goessner.net/articles/JsonPath/
https://www.w3.org/TR/xpath-3/
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the rdf:type predicate) transit:Stop. Since there is only one row in the input CSV considered, a 
singular subject is derived. For each subject, the RML mapping defines three predicate-object 
maps. The first of these maps is used to convey information about the transit route to which 
the stop belongs.  This is done by linking the previously obtained subject with the predicate 
transit:route to the object obtained from the input csv under the column “stop”. Furthermore, 
the same is done for geographic coordinates of the stop using the wgs84_pos:lat and 
wgs84_pos:long predicates and getting the corresponding values (“latitude” and “longitude”) 
from the CSV file. 

RML is structured to be more machine-readable than human-readable. To increase its usability, 

YARRRML30 was introduced. YARRRML is a syntax based on YAML and it offers a more user-

friendly way to create RML mappings. It acts as an intermediary step, allowing users to define 

mappings in a human readable YAML syntax, which then generates the corresponding RML 

mappings, making the process more accessible. 

In Figure 4.4 we compare the same mapping rules defined using the YARRRML language (on the 

left) and then translated to RML (on the right). We can see that YARRRML is significantly less 

verbose than the RML language. This increased conciseness without loss of expressiveness 

simplifies the maintenance of mappings and as such is generally preferred.  

 

Figure 4.4: Example of a YARRRML file (left) and corresponding RML mapping (right) 

Recently, the W3C Knowledge Graph Construction community group collected different experts 

to discuss the further development of RML and propose it as a W3C recommendation. As a 

result, a new specification based on a modular ontology has been released [Iglesias-Molina23]. 

RML is a stable solution with widespread adoption and many supported mapping processors 

exist but can only be used for mappings generating RDF triples as an output. While many 

solutions exist for the conversion via declarative mappings to RDF, the same is not true for the 

conversion from RDF to a target data standard [Grassi23]. A more generic approach to define 

mapping rules is that of using a template-based declarative approach. This is the case for the 

mapping-template component [Grassi23] which defines mappings using the Apache Velocity 

 
30 https://rml.io/yarrrml/  

https://rml.io/yarrrml/
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Template31 language (VTL). Just like RML, this tool can retrieve input data from various common 

formats like CSV, XML, JSON, and RDF. It employs specific query languages for each format— for 

instance, SPARQL for RDF and JsonPath for JSON files. These queries retrieve data from input 

files and organize it into tabular structures known as data frames that are then used to generate 

the required output. The benefit of employing a template-based language is the flexibility it 

offers. Users are not restricted to a single output type but can potentially represent any plain 

text structure. On the downside, the syntax used to define the mappings is bound to the Velocity 

Template Language (VTL) and a single mapping processor is currently available32. 

 

 

Figure 4.5 shows how an RML mapping can be written using the mapping-template component 

approach. Like in RML, data is extracted from the input XML file shown in Figure 4-6. In the 

mapping-template case, a single query written with XQuery33 is defined to access the input once 

while, in RML multiple XPath queries are defined. The mapping-template approach differs from 

RML by explicitly saving the extracted data in a support data frame data structure that facilitates 

the implementation of custom optimisation for accessing and reading the data to be converted. 

The direct key-based access to values in the data frame provided by VTL is then used to write 

the expected output, i.e., the RDF triples. This output is shown in Figure 4.6. 

 
31 https://velocity.apache.org/  
32 https://github.com/cefriel/mapping-template  
33 https://www.w3.org/TR/xquery-31/  

Figure 4.5: An RML mapping (left) and the same mapping expressed in the VTL template language (right) 

https://velocity.apache.org/
https://github.com/cefriel/mapping-template
https://www.w3.org/TR/xquery-31/
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4.2.2 Technical interoperability through Data Integration Tools 

The issue of data integration is ubiquitous and frequent. Therefore, several tools and 

frameworks to address it are available both as open-source or as commercial solutions. Most 

commonly, tools follow the Extract-Transform-Load (ETL) approach to data integration where 

the process is defined by three main steps: data is gathered from various sources (Extract), 

transformed or modified to fit the desired target or system (Transform), and finally loaded into 

a database, data warehouse, or another destination (Load). Examples of such systems include 

Talend34, Apache Fink35 or Apache Kafka36. 

However, the integration of heterogeneous systems does not require only ETL processes. Other 

functionalities, such as data filtering, merging or routing, are usually involved. The main 

categorisation of the components and techniques that can be used in an integration process is 

defined by the Enterprise Integration Patterns [Hohpe04]. An example framework that is built 

with these patterns at its core is Apache Camel. Camel is an open-source, configurable and 

extensible Java integration framework to facilitate the integration with various systems 

consuming or producing data.  

 ETL tools can be used to implement the any-to-one mapping approach discussed and provide 

interoperability among different systems. ETL tools usually support low-code approaches to 

configure data integration solutions using dedicated declarative languages (e.g., a Domain 

Specific Language) and/or graphical interfaces. 

To support data integration leveraging a global conceptual model in the form of an ontology, 

the ETL tools should have support for technologies from the Semantic Web field. UnifiedViews 

[Knap14] and LinkedPipes [Klímek16] have been implemented during the years, providing 

environments fully based on Semantic Web principles to feed and curate RDF knowledge bases. 

A different approach is used by Talend4SW37, whose aim is to complement an already existing 

tool (Talend) with the components required to interact with RDF data. The Chimera framework 

[Grassi23] provides additional components for the Apache Camel framework to implement data 

transformation pipelines through Semantic Web technologies. 

 
34 https://www.talend.com/  
35 https://flink.apache.org/  
36 https://kafka.apache.org/  
37 http://fbelleau.github.io/talend4sw/  

Figure 4.6: Input XML file and output RDF (Turtle) file for the mappings in Figure 4.5. Note that both mappings 

produce the same output. 

https://www.talend.com/
https://flink.apache.org/
https://kafka.apache.org/
http://fbelleau.github.io/talend4sw/
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4.3 DESIGN OF THE DATAOPS TOOLBOX 

The implementation of mediated data exchanges within a swarm will be supported by the 

DataOps toolbox designed to facilitate the development of low-code solutions for data 

interoperability. 

In this section, we specify the components identified for the DataOps toolbox and the 

technologies that will be leveraged for the implementation of such components according to 

the requirements discussed in Section 4.1. 

4.3.1 Components of the DataOps Toolbox 

The challenge of data interoperability cannot be universally defined for all scenarios, and as 

such, there cannot exist a single solution. The DataOps toolbox should provide a flexible and 

extensible set of components that is adaptable to the requirements of integrating 

heterogeneous information systems. For this reason, the main design principle that we follow is 

related to the modularity of the solution. The DataOps toolbox is designed as a set of 

composable modules that can be appropriately configured and combined within a pipeline to 

address heterogeneous integration requirements. 

4.3.1.1 DataOps Pipelines 

To tackle the discussed challenges, starting from the state-of-the-art analysis, we define a set of 

conceptual steps that are required for the definition of pipelines via the DataOps toolbox. 

We consider a mapping scenario where data from a data source, represented according to an 

input data format and data model (Standard A), should be converted to an output data format 

and output data model (Standard B) and stored in a data sink. The mapping scenario may involve 

the integration of additional data sources for the generation of the output, and data 

transformations to be applied during the process. 

The adoption of an any-to-one mapping approach with a reference ontology as global 

conceptual model represents a solution for the core transformation required by the presented 

mapping scenario. Such transformation should be supported by a semantic conversion process. 

Such process, shown in Figure 4.7, can be represented as a two-step approach: 

• Lifting step: the information contained in the input data is extracted according to the 

reference ontology; 

• Lowering step: the information is accessed relying on the reference ontology and used 

to build the output message. 

As suggested in the literature [VanAssche22], the semantic conversion process should rely on 

declarative mapping languages to foster the maintainability and scalability of the solution. 

Mapping rules should be provided as a separate input to the lifting and lowering steps and a 

mapping processor should be able to interpret and execute the mappings.  
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Figure 4.7: Semantic conversion process 

Leveraging the standardised semantics identified by SmartEdge, i.e., a (set of) reference 

ontology(ies) encoding the common semantics for each use case, it is possible to implement 

semantic conversion processes to support semantic interoperability among different nodes 

within a swarm. 

However, to implement the mapping scenario discussed, a DataOps pipeline also requires the 

capabilities to obtain the data from the input data source and forward the output to the target 

data source. We define the DataOps pipelines as the composition of different components 

supporting a mediated data exchange between two nodes in the swarm. A minimum and generic 

pipeline is shown in Figure 4.8 and is composed by: (i) an input node data connector configured 

to access the source node, (ii) a mapping processor configured with lifting mappings, (ii) a 

mapping processor configured with lowering mappings, (iv) an output node data connector 

configured to forward the data the target node. Moreover, a DataOps pipeline can be enriched 

with additional processing blocks to fulfil integration requirements, e.g., interact with an 

external system to enrich the input data or forward the same input message to multiple 

recipients. 

  

Figure 4.8: High-level representation of a DataOps pipeline 

In some cases, the lowering step may not be needed, for example, a SmartEdge smart-node 

capable of processing RDF data (e.g., processing JSON-LD Web of Things descriptions) may only 

need the execution of lifting mappings. Similarly, data exchanges meant to enrich the knowledge 

graph in a SmartEdge swarm only need a lifting procedure to generate RDF triples. 

The composition of DataOps pipelines for a specific mediated data exchange should be 

supported by a declarative approach allowing for the selection and configuration of the required 

components. The same DataOps pipeline should support different deployment options to 

address specific constraints. 
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In the following sections, we specify better the main blocks of a DataOps pipeline, i.e., node data 

connectors and mapping processors. In particular, we expand and analyse the aspects that 

should be possible to declaratively specify via a mapping language and the corresponding 

functionalities that should be supported by the components of the Data Ops pipeline. 

4.3.1.2 Node Data Connectors 

A node data connector component should provide data access from sources and data forwarding 

to sinks considering the different types of nodes enabling the SmartEdge use cases. Figure 4.9 

provides an overview of how a declarative mapping language can support its configuration and 

what are the functionalities that it should implement. 

 

 

 
Figure 4.9: Node data connectors overview 

Node data connectors should support a Data Source Specification that declaratively defines how 

to access (Data Source Access) and retrieve (Reading Strategy) the data to be processed by the 

subsequent blocks in a DataOps pipeline. Different configurations may be needed according to 

the data source considered, for example considering if it is local or remote, if it is a dataset or a 

data service. The Data Source Access should indicate the location (e.g., URL) to access the data 

source, the protocol to access the resource, and the security mechanisms restricting the access. 

The Reading Strategy should indicate the type of interaction expected by the data source, e.g., 

push versus pull mechanism, synchronous versus asynchronous, batch versus stream. Different 

Node Data Connector(s) support different types of data source(s) and the expected interaction 

in reading data from them, e.g., a Node Data Connector may support reading data from data 

sources adopting a specific protocol. 

Similarly, a Node Data Connector is needed also to support the writing of data to a target data 

sink. When writing data, a Data Sink Specification declaratively defines how to connect (Data 

Sink Access) and send (Writing Strategy) the data obtained as a result of the mapping process. 

Finally, the result of the mapping process may be split considering different data sinks. The 
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implementation of this functionality requires the selection or implementation of Node Data 

Connector(s) supporting the target data source and the expected interaction in writing data. 

4.3.1.3 Mapping Processors 

A mapping processor should support the execution of mapping rules defined according to a 

declarative mapping language. Mapping processors are decoupled from the mapping languages 

supported and may implement different approaches for the performant and scalable execution 

of the mapping rules. Starting from an analysis of mapping processors for RDF Knowledge Graph 

Construction available in the literature, we define the functionalities that characterise a 

declarative mapping language and a corresponding mapping processor (shown in Figure 4.10). 

 

 
Figure 4.10: Overview of a mapping processor 

Mapping processors should be able to access data and internally store them to support the 

application of data transformation operations according to the considered mapping rules. To 

decouple the parsing and extraction of data from heterogeneous data sources from the 

execution of mapping rules, intermediate data structures are usually adopted. Such data 

structures can be generalised considering the concept of data frame, i.e., a two-dimensional 

data structure made of rows and columns. 

The parsing and extraction of data is declaratively defined by a Data Frame Definition that 

specifies: (i) the Input Data Format (CSV, XML, etc.) and the corresponding Reference 

Formulation (e.g., SQL, XQuery, etc.) to parse and extract data needed in the data frame and (ii) 

a proper Flattening Strategy for the definition and extraction of a data frame also in the case of 

hierarchical data sources, e.g., JSON or XML. 

The Data Frame Extraction functionality should be implemented by a mapping processor relying 

on the Data Frame Definition specified. The implementation of this functionality requires the 
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selection of a Data Parser responsible for parsing data received from the data source according 

to their specific format (e.g., CSV/XML/JSON), and a Query Engine capable of extracting the data 

frame from the parsed data and according to the Flattening Strategy. The Data Parser and Query 

Engine are usually implemented by the same component. This component can be a SQL query 

engine in the case of a relational database, a SPARQL query engine in the case of RDF data, or a 

more generic library extracting a data frame from a JSON object. 

The required data transformations are specified declaratively via rules that can be interpreted 

by the mapping processor as operations applied to the data frames (Data Frame Manipulation) 

to (i) combine multiple data frames, or (ii) transform the values contained in a data frame. The 

capability of applying these transformations is referred to as the Data Frame Processing 

functionality. The implementation of this functionality requires the selection of two 

components: a Data Frame Combiner capable of executing the combination of one or more data 

frames according to the mapping rules specified, and a Transformation Executor capable of 

applying the data transformation (e.g., a function to modify as lowercase the values in a certain 

column). 

Finally, the required schema transformations rules are defined by declarative mapping rules that 

specify how the data in the data frame should be combined to obtain a valid target output. The 

execution of such rules (Mapping Execution) is implemented by three components: a Rules 

Planner evaluating the dependencies among different mapping rules to schedule their possibly 

concurrent execution, a Rules Engine actually executing the rules, and a Data Formatter, 

validating and formatting the generated output. 

Performance and scalability requirements can be met by either selecting a more performant 

mapping processor for the specific use case or by optimising the mappings (e.g., considering the 

amount of data frames extracted). 

4.3.2 Technologies for the DataOps Toolbox 

This section discusses how the requirements defined in Section 4.1 can be addressed by the 

designed DataOps toolbox. A scouting of available technologies was performed and we present 

the outcomes that will guide the implementation of the DataOps toolbox in SmartEdge. 

4.3.2.1 Data Interoperability through Chimera 

For the implementation of DataOps pipelines, we propose the usage and potential extension of 

the Chimera38  framework. Chimera [Grassi23] is an open-source solution based on Apache 

Camel and enables the definition of semantic data transformation pipelines by composing 

different components for dealing with knowledge graphs. By leveraging the Apache Camel 

framework, we can employ already existing production-ready solutions to address issues 

associated with the integration of heterogeneous nodes (i.e., technical interoperability). 

Moreover, the Chimera components can provide the necessary functionalities for implementing 

a semantic conversion process. Indeed, Chimera can support the implementation of both node 

data connectors and mapping processors as outlined in previous sections. 

Apache Camel is a robust and stable open-source project that supports out-of-the-box several 

components, runtimes and formats to access and integrate a large set of existing systems and 

 
38 https://github.com/cefriel/chimera  

https://github.com/cefriel/chimera
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environments. Such components can provide the necessary functionalities to implement node 

data connectors in SmartEdge. We report here a preliminary list of components that may 

support the requirements of the SmartEdge use cases (e.g., communication protocols): 

• the File Component to read and write to files on the local filesystem; 

• the HTTP Component to access or invoke external http resources; 

• the Camel Paho MQTT 5 Component39 for MQTT; 

• the Camel NATS Component40 for NATS; 

• the OPC-UA Component41 for the OPC-UA protocol. 

Apache Camel relies on the basic concept of Route defining a certain logic to load, extract, 

integrate, transform, and output data. Each Route is a pipeline composed of a set of components 

that are applied in a specific sequence to a certain Exchange, i.e., an entity going through a 

Route. The Exchange is identified by an identifier, and it can be thought of as an envelope. It 

contains the messages (e.g., the data being processed) but also a set of properties that can be 

used to carry an additional state during the Route execution. The components specified within 

the Route play a role in manipulating the data contained in the Exchange. These components 

provide a range of capabilities. For instance, the File Component can be employed to generate, 

duplicate, or remove files. These functions and their settings are configured through a 

component's Uniform Resource Identifier (URI). A URI is a string representation that guides the 

component in performing operations, abstracting the need for users to interact with the 

underlying code. By exposing the capabilities of a component through a URI string, users do not 

need to know the underlying code for a component but can simply choose which functionalities 

to use. Additionally, the decoupling between the configuration of a Route and the code simplifies 

the introduction of changes to the logic of a pipeline. 

Figure 4.11 shows a minimal snippet of an Apache Camel pipeline, defined using the Java DSL, 

that transfers data from a folder to another one. 

 

Figure 4.11: A Java DSL Camel route example that transfers files from the 'inputdir' to the 'outputdir' using the file 

component's URI arguments. 

As shown in Figure 4.12, Chimera provides a set of additional components that can be combined 

within an Apache Camel pipeline. Chimera introduces the support for several operations on 

knowledge graphs by leveraging the abstractions and functionalities offered by the RDF4J42 

library. The RDF Graph in Chimera pipelines is an abstraction that can refer to a local knowledge 

graph (in-memory, filesystem), or a remote graph stored in a triplestore or accessible through a 

SPARQL endpoint. 

 
39 https://camel.apache.org/components/4.0.x/paho-mqtt5-component.html  
40 https://camel.apache.org/components/4.0.x/nats-component.html  
41 https://camel.apache.org/components/3.21.x/milo-client-component.html  
42 https://rdf4j.org/  

https://camel.apache.org/components/4.0.x/paho-mqtt5-component.html
https://camel.apache.org/components/4.0.x/nats-component.html
https://camel.apache.org/components/3.21.x/milo-client-component.html
https://rdf4j.org/
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It is important to highlight that additional components can be developed if specific requirements 

arise and they can be then re-used in different Apache Camel pipelines.  

Figure 4.12: The Chimera framework provides a set of Apache Camel components that can be combined in 

integrated pipelines 

Figure 4.13 provides an overview of the functionalities offered by the Chimera components for 

knowledge graph construction (lifting), transformation (enrichment via RDF graph merge and 

SPARQL CONSTRUCT, inference), validation (SHACL43 shapes), and exploitation (lowering). 

 

Figure 4.13: Overview of the functionalities implemented by Chimera 

Considering the semantic conversion process, Chimera currently offers two mapping processors 

implementing the state-of-the-art approaches discussed in Section 4.2. It handles the RML 

declarative mapping language via a dedicated component that can support the implementation 

of the lifting step, and the template-based approach powered by Apache Velocity that supports 

the implementation of both lifting and lowering. 

In SmartEdge, the configuration of DataOps pipeline can leverage the abstractions introduced 

by Apache Camel and should be supported via: 

• the selection of appropriate Camel components that can serve as node data connectors; 

• the implementation of appropriate mapping rules using a declarative mapping language 

and considering the mediated data exchanges needed by each SmartEdge use case; 

• the selection of an appropriate mapping processor supported by Chimera to execute the 

mappings; 

• the identification of additional components required to implement the pipeline. 

 
43 https://www.w3.org/TR/shacl/  

https://www.w3.org/TR/shacl/
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This process may lead to the implementation of additional Apache Camel components (e.g., 

node data connectors for protocols currently not supported) and/or Chimera components (e.g., 

integration of additional mapping processors or adaptation of the existing ones to support 

performance and scalability requirements). Finally, we plan to work on Chimera to increase the 

overall TRL of the solution. 

4.3.2.2 Performance and Scalability of Mapping Processors 

Mapping processors are software components responsible for executing data and schema 

transformations defined by a declarative mapping language. For this reason, they have a great 

impact on the overall performance and scalability of a DataOps pipeline. In SmartEdge we will 

focus on the optimization of the semantic conversion process starting from the literature and 

the available mapping processors. 

In this section, we mainly discuss a dedicated set of mapping processors tailored for the RML 

language. Indeed, given the broader adoption of RML, many solutions have been developed for 

this language proposing different approaches and optimisations for the mapping process.  

There are various mapping processors available for the RML language, one is RMLMapper 44, a 

Java based RML processor maintained as the reference implementation of the mapping 

language by the same group that developed RML language. CARML45 is an alternative mapping 

processor implemented in Java focusing on streaming and (potentially) non-blocking processing 

of mappings. CARML also defines a set of extensions to the RML language to better support 

stream data sources, XML namespaces and functions for data transformation. SDM-

RDFizer46[Iglesias20] is a Python based project which utilizes streamlined data structures and 

relational algebra operators to efficiently execute RML triple maps through a multi-thread safe 

procedure for each set of RML rules. Another Python based project is morph-kgc47[Arenas-

Guerrero22] that is based on the popular Python pandas 48  library. Morph-kgc improves 

performance by introducing the concept of mapping partitions. These partitions are composed 

of sets of mapping rules that generate distinct subsets of the resulting knowledge graph. By 

processing each group independently, this approach reduces the overall memory consumption 

and execution time needed for the conversion process. Finally, RocketRML 49  provides a 

JavaScript mapping processor for RML. 

The performance and scalability of different mapping processors is evaluated in the literature 

([Scrocca21] [Arenas-Guerrero21] [Arenas-Guerrero22]) but the best solution usually depends 

on the specific scenario considered, e.g., on different parameters characterising the mapping 

rules [Chaves-Fraga19]. Several benchmarks exist for evaluation, such as the GTFS Madrid 

Benchmark [Chaves-Fraga20], however, these are usually targeting the scalability of large-size 

datasets. To the best of our knowledge, no benchmarking is currently focusing on the 

performance and scalability of the mapping process over more dynamic scenarios with multiple 

concurrent requests and low-latency requirements. 

 
44 https://github.com/RMLio/rmlmapper-java 
45 https://github.com/carml/carml 
46 https://github.com/SDM-TIB/SDM-RDFizer 
47 https://github.com/morph-kgc/morph-kgc 
48 https://pandas.pydata.org/ 
49 https://github.com/semantifyit/RocketRML 

https://github.com/RMLio/rmlmapper-java
https://github.com/carml/carml
https://github.com/SDM-TIB/SDM-RDFizer
https://github.com/morph-kgc/morph-kgc
https://pandas.pydata.org/
https://github.com/semantifyit/RocketRML
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As these mapping processors are specific to the RML mapping language their usage is limited to 

situations where the desired output is RDF. The mapping-template50 tool is a Java based solution 

implementing a more generic mapping approach based on the Apache VTL template language 

and discussed in Section 4.2.1. The performance of the mapping-template is evaluated in the 

literature only for the lowering phase [Scrocca21]. An evaluation considering the lifting phase 

and the benchmarks usually applied to an RML processor could be useful for a comparison with 

other existing solutions. In this direction, we will also evaluate the possibility of enabling a direct 

translation of RML mappings to template-based mappings executables through the mapping-

template component. 

Considering constrained devices with limited resources (e.g., CPU/RAM), simpler approaches 

like programmatic string replacement are often adopted for efficient transformation of data to 

RDF [Naiema23]. However, these approaches do not offer the advantages of declarative 

mappings and are difficult to scale and maintain. Within SmartEdge, considering the devices 

involved in the use cases, we will assess and work on optimisations for the performance and 

scalability of mapping processors based on declarative mapping languages.  

4.3.2.3 Deployment strategies for Apache Camel 

 One of the most prominent advantages of leveraging Apache Camel is its inherent support for 

multiple deployment options, which could support flexibility in the deployment of DataOps 

pipelines. The versatility of Apache Camel's deployment capabilities significantly aligns with the 

diverse needs of SmartEdge, particularly in scenarios where the software component 

responsible for mediating message formats and semantics may operate across various 

environments. In the context of the SmartEdge project, this flexibility allows the DataOps 

pipelines to be executed on Edge devices, more powerful devices or in the Cloud. This 

adaptability ensures that the definition of a DataOps pipeline is decoupled from its deployment 

strategy. In this way, the deployment strategy can be tailored to suit the specific demands of 

different deployment environments specified by the different use cases. 

Apache Camel supports different deployment alternatives: 

1. JAR files that are self-contained executable for devices that can run a Java runtime. This 

approach can cover a higher number of use cases, but it may not be suitable for all edge 

devices. In particular, those positioned on the lower end of the spectrum in terms of 

processing power and resources may not be able to run a Java Virtual Machine (JVM). 

2. Native Executables using Camel Quarkus, an Apache project that integrates Camel with 

Quarkus. Quarkus51 is a Java framework tailored for producing native applications. This 

allows Java projects to be packaged as lightweight, fast-booting native binaries by 

employing an ahead-of-time (AOT) compilation approach. Examples of native 

executables are ELF binaries for Linux and exe files for Windows. This deployment option 

can be used for those Edge devices that do not or cannot run Java. 

3. Kamelets using Apache Camel K, a subproject of Camel tailored for simplified 

deployment of Camel Routes on Kubernetes52. Camel K simplifies the process of running 

Camel-based integrations on Kubernetes by allowing developers to create and execute 

integrations using Camel DSL as native Kubernetes resources. This facilitates the 

 
50 https://github.com/cefriel/mapping-template 
51 https://quarkus.io 
52 https://kubernetes.io 
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seamless integration of Camel's extensive library of components and patterns into the 

Kubernetes environment, enabling efficient and scalable deployment of integration 

solutions within cloud-native architectures. Camel K introduces the concept of 

Kamelets, which are abstractions of Camel routes represented as route snippets. These 

Kamelets define and reveal the interface inputs and outputs. In contrast to Camel, 

where the Component is the unit of abstraction, in Camel K, the Kamelet encapsulates 

an entire Route. These Kamelets are executable on Kubernetes clusters where they can 

be used for serverless data integrations. 

Figure 4.14 summarises the deployment options described. The Java JAR file can be obtained as 

a standalone application using Camel Main53 or Camel SpringBoot54. Both the Java JAR file and 

the Native Quarkus executable can be packaged using an appropriate OCI container55 and, 

optionally, deployed using a container orchestrator such as Kubernetes. Kamelets are meant for 

Camel K and should be natively run on a Kubernetes cluster. 

Table 4.1 outlines the advantages and potential issues associated with the different deployment 

options described. 

 
53 https://camel.apache.org/components/4.0.x/others/main.html 
54 https://camel.apache.org/camel-spring-boot/4.0.x/spring-boot.html 
55 https://opencontainers.org 

Figure 4.14: Deployment options for an Apache Camel route. 

https://camel.apache.org/components/4.0.x/others/main.html
https://camel.apache.org/camel-spring-boot/4.0.x/spring-boot.html
https://opencontainers.org/
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Table 4.1: Analysis of PROs and CONs for different deployment options 

Deployment  Pros Cons 

JAR file 

Easy to build. 
 

Easy to deploy to a device, 
everything necessary is contained in 

the JAR. 

Requires the device to run Java. 

Native 
Executable 

Does not require the device to run 
Java. 

 
Faster start-up and execution times 

than a JAR file. 

Creating a native binary demands 
more CPU power and RAM 

compared to building a JAR file. 
While not problematic for one-time 
route building and deployment, it's 

essential to consider this when 
dynamically creating routes. 

 
Not all the Java libraries support 

Quarkus. 

Kamelet 

Allows an even easier re-use of 
routes inside of a larger integration. 

 
Serverless approach enables scale-

to-zero to save resources, and 
scalability via replication for high 

traffic loads. 

Only makes sense in the context of a 
Kubernetes deployment. 

 

4.3.2.4 Low-code approaches to define DataOps pipelines  

A low-code approach simplifies application development by emphasizing configuration over 

manual coding. The overall objective is to enable a declarative configuration of components so 

that users can reduce the need for implementing custom solutions. 

For the Apache Camel framework, data integration pipelines are defined using the abstraction 

of Routes rather than direct coding. This abstraction empowers a no-code approach to data 

integration, as it exposes all available functionalities of Camel components through well-

documented URI parameters, which users can configure when creating a route. This approach 

also means that modifying the data integration pipeline doesn't necessitate rebuilding the entire 

software artifact that executes Camel routes, it only requires changes to the file where the route 

is declared. 

Routes can be defined using several domain-specific languages (DSL), with the most prominent 

options being Java, XML, Spring XML, and YAML. Alternatively, routes can be built using a 

graphical user interface without writing code using Apache Camel Karavan56 and the plugin for 

Visual Studio Code. This graphical approach significantly eases the process of route definition, 

as it avoids syntax and logical errors that may happen when manually writing a route in a text 

file. 

 
56 https://github.com/apache/camel-karavan 
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Figure 4.15 shows an example Camel pipeline defined using the graphical user interface 

provided by Apache Camel Karavan. On the left, the corresponding YAML generated by the tool 

is displayed. 

The adoption of Apache Camel for the DataOps toolbox enables a low-code approach for the 

configuration of pipelines as composition of proper building blocks. We will evaluate the 

possibility of adding support for Chimera components within Apache Camel Karavan to enable 

also a graphical definition of DataOps pipelines. 

 

Figure 4.15: An example of a route in YAML (left) and the same route created visually with Apache Karavan (right). 

4.4 DATAOPS TOOLBOX IN SMARTEDGE 

This section discusses how the designed DataOps toolbox can support the different SmartEdge 

use cases. We identify potential data exchanges that would require a mediation, i.e., a 

conversion from a structured heterogeneous format (e.g., CSV/XML/JSON) to the standardised 

semantic interfaces defined in Section 3 or vice versa. Moreover, we provide an initial 

description of deployment options that the DataOps toolbox should support for its integration 

considering the architectural constraints of each use case. 

4.4.1 Mediated Data Exchanges in SmartEdge 

The configuration of different pipelines through the DataOps toolbox will be needed in 

SmartEdge to support mediated data exchanges. The implementation of such pipelines can be 

enabled by ensuring the availability for each use case of a set of components: 

• Node data connectors: requirements for each use case about the data sources to be 

accessed (both as data providers and as data consumers). Different connectors should 

be identified or implemented to support heterogeneous protocols and interaction 

mechanisms (e.g., pull/push).  
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• Mapping rules: requirements for each use case about the data formats and data models 

adopted and the target standardised semantics. Mapping rules should be declaratively 

defined to support the conversion of payloads between each pair of input/target data 

format/model. 

• Mapping processors: requirements for each use case about the mapping processors 

considering constraints on performance/scalability and/or about the runtime 

environment for the execution. 

The identification and/or implementation of such components is based on the definition of 

which mediated data exchanges are necessary in SmartEdge. 

Figure 4.16 provides an overview of the data models/formats identified within SmartEdge 

considering each use case and the standardized semantic interfaces discussed in Section 3. The 

arrows represent the requirements identified at this stage of the project for the conversion of 

data from one data model/format to another. The red arrows identify the conversions that can 

be possibly supported by the DataOps toolbox.  

 

 

Figure 4.16: DataOps toolbox in SmartEdge 

The figure does not consider data models associated with native data exchanges that are 

supported by default. For example, considering the SmartEdge Use Case 2 (UC2) we excluded 
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from the analysis the following native data exchanges toward the Traffic Sensor Node fixed at 

the road infrastructure: 

• Camera/Radar/Lidar to Sensor Node 

• Connected Vehicle to/from Sensor Node 

• Controller Node to Connected Vehicle 

• Controller Node to Traffic Light 

• Sensor Node to Controller Node: Sensor measurement data sourced from 

radars/cameras are converted into UC-specific JSON by the Sensor Node before sending 

out to other nodes 

At the bottom of the figure, we represent a set of devices and related data models/formats 

identified as swarm nodes by the different use case: 

• Industrial PLC communicating through OPC UA (Use case 4); 

• IoT Devices and Smart Traffic Nodes exchanging messages through custom MQTT 

topics/payload (Use case 1, Use case 2, Use case 3, Use case 4, Use case 5A/5B); 

• Autonomous Mobile Robot (AMR) exchanging binary messages through DDS (Use case 

3). 

Finally, we represented a SmartNode that identifies a node in the swarm implemented by 

SmartEdge and thus directly able to communicate according to the standardized semantic 

interfaces defined by the project. 

The interoperability among different protocols can be enabled as discussed in Section 3.4 thus 

reducing the amount of data models/formats to be considered: 

• Messages exchanged using a set of topics in the SmartEdge middleware (format defined 

by the middleware selected for the SmartEdge architecture, semantics possibly 

customly defined for each topic); 

• OPC UA data exchanges standardised through the OPC UA FX and other companion 

specifications. 

The possibility of defining a single standardised interface through the SmartEdge middleware 

also for OPC UA data exchanges will be evaluated. In this case, the DataOps toolbox may support 

the conversion from OPC UA FX to an intermediate representation adopting MQTT and 

Sparkplug B. 

The description of each node, i.e., what are the interactions available for each node and how 

they can be invoked, should be harmonised according to the definition of skills and capabilities 

in the SmartEdge Schema. In this context, the DataOps toolbox may support the conversion from 

OPC UA FX descriptions or from WoT Thing Description to the SmartEdge Schema. 

Considering application messages, the DataOps toolbox can be employed for the conversion of 

custom payloads received via the SmartEdge middleware to the standardised semantics (e.g., 

Robotic ontology, Smart Traffic ontology, Health ontology) defined for SmartEdge. 

For example, within the SmartEdge UC2 the payload generated by the Sensor Node is a JSON 

string in a structured use-case-specific format. The data format aims primarily at seamless 

programming, network bandwidth and computation performance, therefore does not 

necessarily abide by standard ontology schemas. The JSON string in Figure 4.17 is an example 
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of sensing data denoting current states of a bunch of vehicles moving near intersection 

“fi.helsinki.270” in Helsinki.  

 

Such messages are passed among our nodes via the MQTT pub/sub mechanism and may be 

made available to other nodes via the SmartEdge middleware. The above Sensor Node JSON 

strings need to be lifted into semantic JSON-LD/RDF strings, matching with the defined 

standardised domain-specific ontology, i.e., the Smart Traffic Ontology. 

Considering the runtime interactions for the execution of a recipe and/or the assignment of 

roles, tasks, and instructions to certain nodes, it may be necessary to map messages to the 

SmartEdge Schema or Recipe Model in RDF. Also in this context, the DataOps toolbox may 

support such conversion. Moreover, it may be necessary to map certain information between 

the RDF representation according to the Recipe Model and the structured data format (e.g., 

JSON) fulfilling the requirements of the Mendix tool. 

Finally, certain swarm control messages will be directly provided by the SmartEdge network 

layer for scenarios associated with dynamic swarm formation and management. The adoption 

of the DataOps toolbox to support the conversion of such messages (e.g., from Swarm Network 

Tables) to the SmartEdge Schema may be evaluated. 

4.4.2 Deployment of DataOps pipelines in SmartEdge 

Considering the SmartEdge use cases, different constraints may emerge for the deployment of 

the DataOps toolbox. For this reason, we identify different options that should be potentially 

supported for the integration of the DataOps toolbox components within the swarm: 

• Within a dedicated smart-node: a dedicated component for the mediation of data 

exchanges is deployed and is considered as an additional node in the swarm providing 

data interoperability capabilities. 

Figure 4.17: Example JSON string from Use Case 2 
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• Embedded in the source/target smart-node: the component for the mediation of data 

exchanges is deployed as part of either the source or the target smart-node and can be 

integrated or as a library, if the source code of the runtime of the smart-node is 

compatible, or as an external component invoked by the smart-node for each message 

to be sent/received. In this case, it is preferable to deploy multiple components for each 

smart-node requiring a mediated data exchange. 

• Embedded in the swarm orchestrator: the component is deployed as part of the swarm 

orchestrator and can implement mediated data exchanges for different nodes involved 

in the swarm and communicating through the orchestrator. 

• Embedded in the middleware/network layer: the component is deployed as part of the 

middleware/network layer and can implement mediated data exchanges for different 

nodes involved in the swarm, possibly even in a transparent way (i.e., without explicit 

interaction by the nodes). 

Such choice may be dependent on specific constraints of each use case, for example, it may be 

guided by the availability of more performant nodes to reduce the latency or by specific 

constraints for the deployment/integration of the DataOps toolbox in certain nodes (e.g., 

licensing or constraints on software installation). For each option, further requirements may be 

elicited depending on the hardware/software involved. 
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5 CREATION AND ORCHESTRATION OF SWARM INTELLIGENCE APPS 

The chapter provides the current work on design and implementation of an orchestrator for 

Swarm apps in the SmartEdge environment. These apps will be instantiated from existing 

templates, targeted to match the existing devices, which would integrate the swarm. The 

description of the devices and their capabilities would be specified using the declarative and 

semantic models proposed in Task 3.1. Moreover, these capabilities would be matched with the 

specification of the templates, thus enabling the orchestration of the app, and initiating the 

interactions among the swarm devices. The templates themselves will be specified using 

semantic descriptors, and the data flows will be enacted using the DataOps infrastructure 

provided in Task 3.2 and instantiated using the Mendix framework. 

The contributions of Task 3.3 are: 

Recipe Model implementation in Mendix 

• SmartEdge Swarm Orchestrator in Mendix 

5.1 STATE OF THE ART – ORCHESTRATION OF SWARM EDGE APPS 

With the wide availability of IoT/WoT edge devices for sensing and actuation, it becomes 

increasingly important to facilitate the orchestration and deployment of these systems. Given 

the complexity of the configuration of edge platforms, including the setup of device 

interconnections, integration of inputs/outputs, definition of tasks to be performed, fallback 

scenarios, etc. [Abbas17].  

5.1.1 Cloud/Edge Deployment 

In many cases the deployment of edge intelligence solutions requires heavy involvement of 

technical experts that must manually prepare and configure the participating devices. This 

makes it challenging to introduce changes in the device organisation, replace nodes, or modify 

the tasks to be performed.  In the domain of cloud computing, the deployment of production 

systems is automatised using frameworks like Kubernetes 57 [Al Jawarneh19], which decouples 

the execution runtime of the individual nodes from the orchestration of the entire cluster. 

Containerised services in this type of environments allow high flexibility as it allows for 

programmable interfaces that developers can use for monitoring, node synchronisation, event 

management, scaling, failure handling, etc. However, platforms like Kubernetes are better fitted 

for data centres, which work in very different conditions with respect to edge devices in IoT. 

Among these we can mention the network reliability, or the dynamicity of incoming data from 

devices that can abruptly join or quit the system [Alberti13].  

In the SmartEdge project, some of the edge nodes are considered to have self-organising 

capabilities, enabling the formation of Swarms of devices. In this context, making use of   

intelligence capabilities at the node level is essential for orchestration and deployment. In order 

to adapt Kubernetes to edge environments, different lightweight frameworks exist, such as 

K3s58, Microk8s, KubeEdge [Xiong18], or Kubelets [Goethals20], which are designed to adapt and 

perform better in scenarios where edge devices and sensor nodes are in charge of the 

 
57 https://kubernetes.io/  
58 https://k3s.io/  

https://kubernetes.io/
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application execution. Other approaches exploit geo-graphical relationships among nodes, like 

Oakestra [Bartolomeo20] or OneEdge [Saurez21], which optimises scheduling of edge devices, 

beyond the Kubernetes-based solutions. Other efforts in this line include CloudPath 

[Mortazavi17], HeteroEdge [Zhang19] or SpanEdge [Sajjad16], more focused on specific aspects 

such as streaming data applications. Other approaches more related to Fog Computing include 

open-source project FogLamp 59, while network-specific works like VirtualEdge [Nguyen16] are 

centred on edge nodes for cellular networks.  

5.1.2 Semantic IoT Platforms and WoT APIs 

Semantics provide the ability to create abstractions that capture the essential capabilities, goals, 

roles, and tasks performed by edge and IoT nodes [Thuluva20]. The advantage of using such 

descriptions is that they provide the means to abstract the actual implementation or device 

specific functions from the description of the task(s) that the devices must execute. This enables 

discoverability of devices, as well as enhanced flexibility, so that different nodes (e.g., from 

different vendors) could fulfil a given task if they comply with the description of the device 

capabilities. Moreover, the semantic description of IoT devices may allow orchestrators and 

coordinator nodes to look for, or replace execution nodes when needed, using the semantic 

metadata as a catalogue, or directory.  

At a development level, these semantic descriptions can be created, accessed, or modified 

through an API. In the BIG IoT platform, for example, a generic API is used as a bridge between 

existing platforms, delegating interoperability to the semantic model. Other APIs, such as the 

one provided in the meSchup IoT platform [Kubitza17], have a deeper control over the devices 

in the system, although with less flexibility regarding device interoperability. Beyond these APIs, 

other attempts have been made to bridge applications and IoT devices, such as the Semantic 

Gateway Service [Desai15], or the Semantic Information Broker, which incorporates the notion 

of discovery in IoT environments, implemented as “smart spaces” [Viola16]. 

In the realm of semantic integration and orchestration, there has been a considerable amount 

of work regarding Semantic Web Services [Calbimonte20]. This concept includes the publication 

of services following the Web standards, including semantic annotations and ontologies that 

enable their automatic discovery, composition, interconnection, and invocation. The 

composition of Semantic Web Services requires languages that formally describe inputs and 

outputs and indicates the way in which services can be integrated. While the Web Service 

Description Language (WSDL) 60  has been used to address the syntactic aspects of service 

description and consumption, for the semantics it was needed to extend the language, for 

example through approaches like OWL-S, WSMO, or SAWSDL.  

Following the evolution of Web Service APIs towards a design based on the REST principles, 

beyond the limitations of SOAP/WSDL, alternatives such as RESTdesc, hRESTs, WSMO-light, or 

MicroWSMO emerged, offering different levels of service description for Web APIs [Lucky16].  

However, most of these solutions are oriented towards back-end services and need to be 

adapted to WoT environments. Application integration solutions at the application level, such 

as IFTTT or Node-RED61 have been used in previous works, especially for composing complex 

 
59 https://dianomic.com/platform/foglamp/  

60 https://www.w3.org/TR/sawsdl/ 
61 https://nodered.org/ 

https://dianomic.com/platform/foglamp/
https://www.w3.org/TR/sawsdl/
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workflows in IoT environments, using individual services as building blocks. These concepts of 

pipelining components can offer a powerful and flexible architecture for loose coupled WoT 

services. In combination with semantically rich models (i.e., based on RDF vocabularies), 

descriptions of WoT processes can serve as the basis for a seamless orchestration of 

autonomous edge nodes. Nevertheless, to this point there is no solution yet that allows this type 

of orchestration in swarms of IoT edge devices, using templates that provide semantic 

descriptions of swarm goals, tasks, and background knowledge. 

5.1.3 Semantic Descriptions of Devices for Orchestration 

Orchestration of edge devices requires having a common representation of their main 

characteristics, expressed as capabilities, roles, tasks, etc. The usage of semantic models to 

enable orchestration has been a key element in previous works. Different ontologies have been 

proposed to tackle this issue, most notably the SSN (Semantic Sensor Network) ontology, and 

its successor, the SOSA ontology [Janowicz19]. These models are not meant to be used on their 

own, but in combination with other vocabularies, e.g., QUDT for expressing quantities, or 

domain-specific ontologies. Examples of these ontologies include Smart Applications REFerence 

(SAREF)62, targeting smart appliances, brick for building management, etc.  

Specifically for the Web of Things domain, the W3C Web of Things Thing Description 1.1 

Recommendation (TD)63 is a semantic model designed to serve as an entry point of a Thing. The 

TD is composed of mainly the following elements: metadata descriptions of the Thing, 

affordances that specify properties, events, and actions possible with the Thing, as well as the 

data schema, security mechanism information, and links to related Web resources. For the 

orchestration of Things, the TD affordances provide essential information regarding the ways in 

which other nodes can use/interact with it. First, the orchestration service can identify the 

Things that offer capabilities needed by the tasks specified in a Swarm recipe, or template. The 

TD specification also includes the concept of a Thing Model, a logical description of the potential 

interactions with a “class” of things. A Thing Model can include the properties, actions, and 

events exposed by a type of Thing, although it does not contain individual information about an 

instance of the Thing (e.g., concrete address, serial number, or other specific data).  

5.2 DESIGN OF THE SWARM ORCHESTRATION  
One of the goals of SmartEdge is to provide low-code tools for configuring and orchestrating 

Apps that manage and run on a Swarm of edge devices. To achieve this, in WP3 we envision the 

usage of tools that allow users to visually construct the application with drag-and-drop 

functionalities, and intuitive interfaces.  

5.2.1 Design-time Orchestration Tooling 

In order to enable the configuration and creation of recipes, it is needed to use low-code tools 

that allow designing the flow and components of the Swarm App, as well as its inputs and 

outputs. In this section we describe the characteristics of the Mendix 64 framework that will 

precisely be used and extended for this purpose. 

 
62 https://saref.etsi.org/ 
63 https://www.w3.org/TR/wot-thing-description11/ 
64 https://www.mendix.com/  

https://saref.etsi.org/
https://www.mendix.com/
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The Mendix framework and ecosystem allows IT teams and App developers to accelerate the 

creation and entire lifecycle of digital solutions including the following features: 

• Rapid development of applications: It allows visual development of complex 

applications, as well as provides support for automated deployment out of the box. 

• Extensibility: The Mendix platform is extensible, with the possibility of reusing 

components, adding widgets, connecting to different data sources, and customizing 

behaviours through APIs and code snippets.  

• Cloud capabilities: Containerisation of Mendix apps is provided by default, enabling both 

cloud and local installations easily as addressed in functional requirements LC-006, LC-

007 and LC-008 in Table 2.2. 

• Marketplace: A large number of reusable components are available, including widgets, 

modules, etc. which are provided by the Mendix community. 

• Security privacy: Security and governance features are available by default in Mendix, 

enabling trusted use of its components. 

With these considerations at hand, the Mendix platform provides an interesting starting point 

for enabling the orchestration of SmartEdge Apps using a low-code approach. The two main 

components of Mendix relative to the orchestration are the Mendix Studio, and the Mendix 

Runtime. 

Mendix Studio Pro (currently in version 10.x) is a visual model-driven IDE with customizable 

themes, drag-and-drop functionality, reusable components, and full-stack capabilities. This is 

shown in Figure 5.1 and Figure 5.2. The orchestration in SmartEdge will be configured at design 

time using this tool, which permits organizing the different data sources (e.g., coming from edge 

nodes), establishing a flow of tasks and computations that need to be performed, and the nodes 

that are involved.  

 
Figure 5.1: Mendix Studio environment for designing the App UI. 
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However, the current Mendix functionalities do not allow for the usage of ontologies to 

represent nodes in the system. Although there are different connectors available in the Mendix 

marketplace (e.g., Bluetooth) for certain types of devices, there is not really a concept of a group 

of nodes, and even less the concept of a Swarm of nodes. As we will see later, these are 

functionalities that will be incorporated as part of the SmartEdge WP3 developments. 

5.2.2 Low-code Runtime Execution Tooling 

Once the design of the App and its components has been prepared, the actual execution is taken 

in charge by the Mendix runtime component. The Mendix Runtime is essentially an interpreter 

of a Mendix model, enacting input data ingestion, executing microflows & nanoflows, displaying 

data results in App pages, etc. The Medix Runtime can be decomposed in two parts, the Mendix 

Runtime Server and The Mendix Client. 

Mendix Runtime Server: It is the part of the Mendix Runtime that is in charge of executing 

microflows, as well as connecting to different data sources and external services. The Runtime 

server communicates answering requests to Mendix Clients. The Runtime Server can be 

deployed on the cloud or locally, e.g., for testing. The requests from the clients are processed 

and data is returned as a result, following the Mendix model that describes the microflows and 

the application logic. The Runtime Server follows a stateless service pattern, allowing horizontal 

scaling.  

Mendix Client: It is the runtime component that runs on the devices of the end-users, acting as 

an interface with the domain-specific Application. The Client is decoupled from the Runtime 

Server, and thus can execute certain processing flows locally, only requesting the server when 

necessary. Mendix-based applications can be deployed as Mobile or Web, Mendix Client runs 

on both cases. In the case of Web applications, the Mendix Client is launched in JavaScript on a 

single dynamic HTML page. In the case of a Mobile App, the Mendix Client is installed as a React 

Native65 application.  

 

Figure 5.2: Mendix Studio environment design mode. 

5.2.3 Swarm Apps Application Logic Design 

As explained in Section 3, the SmartEdge Swarm Apps will be configured using the so-called 

recipes, which are templates or blueprints that specify the goals of a Swarm, and the processes 

that are needed to accomplish them. In the use cases where Mendix is used as visual 

 
65 https://reactnative.dev/  
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development tool, and as engine for the orchestration of the SmartEdge App, the application 

logic has to be specified using the concepts of microflows and nanoflows. These flows allow 

performing different types of activities, including branching logic, updates on data, or displaying 

content, all in a declarative way.  

In the case of microflows (Figure 5.3) these run on the Mendix Runtime Server, and thus can 

access cloud services, external data sources, etc. but cannot run offline. In contrast, nanoflows 

run directly on the device (or browser for Web apps), therefore being able to be executed offline 

and autonomously. Depending on App restrictions and autonomy requirements and 

performance, a combination of microflows and nanoflows can be used in the Studio designer. 

 

 
Figure 5.3: Microflow hierarchy in the Mendix model. 

The notation of both nanoflows and microflows is based on BPMN (Business Process Model and 

Notation) [Recker06], which is a well-known standard for representing workflow processes. An 

instance is shown in Figure 5.4. The elements that compose a nanoflow or microflow can fall 

under the following categories: 

▪ Activities: Elements that represent the actions that are executed in a microflow or 

nanoflow. 

▪ Events: Elements represent start and end points of a microflow or nanoflow, as well as 

special operations inside a loop. 

▪ Flows: Denote the connection between elements. 

▪ Decisions: Elements that indicate making choices and merging different paths of a flow. 

▪ Loops: Used to iterate over a collection of objects. 

▪ Parameter: Elements represent data that is used as input for the microflow or nanoflow. 

▪ Annotations: Elements that can be used to add comments or annotations in a microflow 

or nanoflow. 

Besides the fact that nanoflows run on the client, and microflows on the server, there are other 

important differences between the two. First, in nanoflows the client actions are immediately 

executed as the steps of the flow are run. Conversely, in microflows the client actions only run 

after the client runtime receives the response from the server. Also, several types of expressions 

cannot be used in the same way (e.g., to obtain the current session, etc.). The same applies for 

action elements. Some are available only for nanoflows, and some only for microflows. 

Regarding transactions, these are only run in microflows. For nanoflows, in case of errors there 

is no automatic rollback procedure. Moreover, there are differences linked to the dependencies 

and limitations of the libraries used by nanoflows (i.e., JavaScript libraries) and by microflows 
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(i.e., Java libraries), which may also have impact on the functionalities of the flow actions and 

elements.  

 

Figure 5.4: Example of a Mendix flow including different steps. 

5.2.4 Semantic Representation of Swarm App Recipes 

The Swarm Apps in SmartEdge are configured using templates of applications’ specifications, 

called recipes. These recipes indicate the requirements of an App, as well as the capabilities of 

the IoT and other devices that form the swarm. A recipe also specifies and links to the dataflow 

and the business logic of an App (e.g., using a standard like BPMN), in a declarative format. In 

consequence, for those Apps in SmartEdge where this design is performed using Mendix, the 

App flow will be represented using the Mendix Metamodel, and in particular microflows or 

nanoflows, depending if they run on the Mendix Runtime server, or the Mendix Client.  

Beyond the default features of Mendix, SmartEdge recipes are specified using semantically 

enabled recipes. This means that the recipe itself will be stored in RDF format, including the 

different elements of the App flow. More concretely, and as discussed in Section 3, it includes: 

(i) the goal of the task to be executed by the Swarm; (ii) required conditions to start the task; 

(iii) capabilities of the nodes needed to perform the task; (iv) completion conditions for the task; 

(v) steps and transitions among these steps specified as a flow; (vi) topics and events messages 

produced during the execution of the transitions.  

 
Figure 5.5: Discovery of semantic recipes for the requirements of a Swarm App in SmartEdge. 

One of the key elements of the recipes is the specification of capabilities of the Swarm nodes as 

in Figure 5.5 and Figure 5.6, which are required to complete a given task, and comply with the 

goals of the recipe. These capabilities represent functional requirements of an application, 

which can be described as skills. The semantic description of these capabilities can be 

implemented using semantic models for the description of Web of Things. Concretely, the TD 

proposes ontology terms for describing affordances. The TD affordances provide machine-

understandable metadata of a Thing that shows the possible choices that consumers have to 

interact with a Thing. As an example, the following snippet in JSON-LD represents an action 

affordance indicating the possibility of any interaction to turn on or off a connected lamp. 

 
  "actions": { 

Discover recipes for the 

Swarm App 

Mendix Studio Pro 

design environment 

Swarm app Low-

code developer 

Mendix KG 

extension 

SmartEdge 

Recipes 

Knowledge Graph  



D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908 

 

90  

 

        "toggle": { 
            "description": "Turn on or off the lamp", 
            "forms": [ 
                { 
                    "href": "coaps://mylamp.example.com/toggle", 
                    "cov:methodName": "POST", 
                    "op": "invokeaction", 
                    "contentType": "application/json" 
                } 
            ], 
            "safe": false, 
            "idempotent": false 
        } 
    }, 

 

 

Therefore, when building a recipe in a low-code environment like Mendix, the KG extensions of 

SmartEdge will allow specifying capabilities using semantic metadata like the TD affordances. In 

this way, attached to the Mendix microflows containing the application logic and conditions, it 

will contain all elements expected in a recipe, i.e., goals, sub-tasks, capabilities, prerequisites, 

etc.  

 

 
Figure 5.6: Creation of a Recipe using a Low-code environment in SmartEdge. 

Nodes can provide different but complementary capabilities, and the recipe should specify how 

the interactions among them are configured to complete a task. The metadata of these 

interactions include the source and destination capabilities, which for the Low-code designer 

will allow identifying Swarm nodes that can provide these capabilities. Moreover, the business 

logic will be attached to the recipe using a business process language, as it is the case with 

Mendix. The domain models (as shown in Figure 5.7) will use the semantic extensions to 

incorporate terms from external vocabularies, to foster interoperability in SmartEdge recipes. 
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Figure 5.7: Domain model specification in Mendix.  

Regarding the recipe metadata, a different number of ontologies need to be used/reused 

(shown in Figure 5.8). During the design time of the recipe, the following vocabularies and/or 

ontologies might be referenced: 

▪ As explained before, TD vocabulary will be used and extended to indicate capabilities. 

▪ For sensor and system descriptions, including technical details of the device 

specifications can be indicated using the Semantic Sensor Network ontology SSN/SOSA. 

▪ To describe node-related metadata, including Swarms, SmartEdge nodes, sensor nodes, 

orchestrator, coordinator, etc., the newly created SmartEdge ontology will be 

employed. 

Moreover, depending on the use-case, domain specific ontologies will be used to describe the 

goals, and technical details of the capabilities. This might include generic ontologies for cross-

domain aspects like units of measurement (e.g., QUDT, UM), or general knowledge ontologies 

like Wikidata 66  and Schema.org 67 . Furthermore, specific ontologies for healthcare, 

manufacturing, or robotics might be referenced when needed. 

 
66 https://www.wikidata.org/  
67 https://schema.org/  

https://www.wikidata.org/
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Figure 5.8: Reuse of the SmartEdge ontologies and other external vocabularies at design time. 

5.2.5 Instantiation and orchestration of Swarm Apps 

With the planned extension for Mendix regarding the creation and search of recipes using 

semantic metadata for capabilities, goals, prerequisites, etc., it should be possible to instantiate 

these recipes in a given SmartEdge environment. 

The instantiation should be able to provide a matchmaking functionality, in order to map the 

capabilities needed by the recipe with the capabilities offered by the nodes in the Swarm. 

 

Figure 5.9: Matchmaking between the capabilities required in the recipe and the nodes available in the Swarm at 

design time. 

The matchmaking step that addresses functional requirement LC-005 in Table 2.2 shown in 

Figure 5.9 will be crucial for the design and implementation of an orchestrator for Swarm apps 
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in the SmartEdge environment. While in the recipe the capabilities are presented in an abstract 

form, after the matching there are specific SmartEdge nodes that adopt a given role within the 

Swarm. These Apps will be instantiated from existing templates (recipes), as functional 

requirements CSI-010, CSI-015 in Table 2.3, targeted to match the existing devices, which would 

integrate the swarm. The description of the devices and their capabilities would be specified 

using the declarative and semantic models developed in Task 3.1. and described in Section 3. As 

explained above, the node capabilities will be matched with the specification of the recipes, thus 

enabling the instantiation of the App recipe, and configuring the interactions among the swarm 

devices. The recipes themselves will be specified using semantic descriptors, and the dataflows 

will use extensions that allow using the DataOps infrastructure provided in Task 3.2 (see Section 

4) and instantiated using the Mendix framework.   

In summary, the orchestration will need to follow the steps described below, during the design 

time: 

▪ SmartEdge capabilities matching – Using the common semantic schema (SmartEdge 

schema) defined in Task 3.1, the matching component will map application 

requirements to device capabilities in order to help discover the Swarm nodes that can 

help contribute to the recipe goals. SmartEdge schema constraints will be specified 

using the SHACL language.  

▪ Recipe model orchestrator – This component will extend the low-code Mendix app to 

support the specification of semantic recipe models, which will be used to orchestrate 

the Swarm apps with the devices matching the needed requirements as addressed in 

functional requirements CSI-016, CSI-017 and CSI-018 in Table 2.3. 

▪ Dataflow orchestration support – This component will use the Task 3.2 DataOps 

infrastructure to link the needed data sources (data streams, linked datasets, etc.) to 

the orchestrated Swarm application.  

As an example, if we consider the case of an App that requires capturing sensor data from a 

Bluetooth connector (Figure 5.10). Using a Low-code app like Mendix, the developer should be 

able to build a microflow and add connectors for different data sources (Figure 5.11).  

 

 
Figure 5.10: Adding a Bluetooth connector in Mendix. 



D3.1 Design tools for continuous semantic integration SmartEdge GA 101092908 

 

94  

 

Then, the application logic of the App can be built using different types of elements, including 

other data connectors, conditions, sequences, etc. At this point, the extension for Knowledge 

Graph support should allow adding the capabilities in terms of the TD vocabulary. It should also 

allow connecting to the Knowledge Graph to reuse terminology from domain-specific 

vocabularies. 

 
Figure 5.11: Example of a flow development in Mendix. 

Through these extensions of the Low-code development environment Mendix, the semantic 

recipes will be stored in the SmartEdge Knowledge Graph, enabling the discovery of suitable 

recipes. In this manner, when a new App is developed, it will be possible to find existing recipes 

that can be reused and/or extended, thus avoiding double work. Within a recipe, a set of roles 

and tasks and different dataflows can be established, so that there is a common and machine 

understandable description of what the swarm should do. The semantic vocabularies will be 

integrated into the SmartEdge ontology (defined in Task 3.1) and will include existing standards 

such as the W3C Things Description for the Web of Things, as mentioned earlier in this section. 

The developer will use the Mendix Studio Pro development environment to modify these recipes 

if any changes are necessary, or if new versions of the recipe are required. All of the recipes will 

be represented as RDF documents stored in the Knowledge Graph. 

Once a semantically enriched recipe is created or selected, it can be instantiated, so that the 

different roles specified can be assumed by different nodes in the swarm. The instantiation in a 

first step will consist in matching each of the required capabilities with a Swarm node that is 

able to comply with the recipe requirements. If there is no available node for a certain 

mandatory part of the App flow, then the design-time environment should alert that it is not 

possible to instantiate the recipe successfully.  
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Figure 5.12: Instantiation of a SmartEdge recipe 

Otherwise, if all the preconditions and capability requirements are met, the recipe is instantiated 

as in Figure 5.12, and then passed on to the orchestrator, who will be in charge of executing the 

recipe in runtime. This will include the coordination of the operations to be executed by different 

nodes in the swarm. Therefore, the orchestrator will also include the instantiation of the 

semantic description of the tasks, goals, sub-tasks, and skills established in the recipe.  With this 

information the coordinator will be able to know, for example, that it needs the participation of 

SmartEdge smart-nodes with certain skills (e.g., stream reasoning over sensor measurements). 

The coordinator will then need to find and discover which nodes comply with these 

requirements. In certain cases, the orchestrator may not find the necessary resources to achieve 

the recipe, and it could either fail or latently wait until the necessary resource can be scheduled. 

In case of a successful node discovery, then the orchestration itself will be organized as 

addressed in functional requirements CSI-019 and CSI-020 in Table 2.3.  

 
Figure 5.13: Orchestration of the swarm using the instantiation of the recipe received by the orchestrator from the 

design-time tool. 

 The orchestrator, as shown in  Figure 5.13 may often coincide with the swarm coordinator, and 

as such will organize the forming and management of the swarm, with different nodes joining 

or leaving when needed. In certain cases, the SmartEdge nodes may have the capability of 

holding their own semantic descriptions (e.g., skills or affordances) so that they can be found 

and incorporated at runtime in the Swarm. In any case the Orchestrator will need to perform a 

matching operation between the set of available nodes and the different roles established in 

the recipe, and respect the specification of skills, goals, and tasks. Once this has been 

established, the different nodes will be able to start operating and exchanging the different 

data/messages, potentially using the DataOps components of T3.2. After the orchestrator runs 
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the specified microflows, then the UI of the App will be able to process data and/or display it to 

the end-user, as in Figure 5.14, with the Bluetooth connector. 

 

 
Figure 5.14: Mendix end-user App interface, connecting to data from the edge device. 
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6 CONCLUSIONS 

This document introduced the concept of Continuous Semantic Integration (CSI) in the 

SmartEdge project (Section 1.1). This concept is broken down into (i) Standardized Semantic 

Interfaces (Section 3); (ii) DataOps toolbox for semantic management of things and embedded 

AI apps (Section 4); (ii) Creation and orchestration of Swarm Intelligence apps (Section 5). 

This deliverable contributes to Obj.2: Middleware and tools for continuous semantic integration 

allowing the SmartEdge solution to interact with devices according to a (i) standardized semantic 

interface, via a (ii) continuous conversion process based on declarative mappings and scalable 

from edge to cloud, and (iii) providing a declarative approach for the creation and orchestration 

of apps based on swarm intelligence. 

KPIs relevant for this deliverable and Work Package 3 (WP 3) are presented in this deliverable 

(see Table 2.4). The goal of this deliverable is in the first place to provide design of tools for 

Continuous Semantic Integration. We will report the progress towards KPIs in the first 

implementation of this work, i.e., in D3.2.  The work presented so far is based on requirements 

from SmartEdge use cases and the work from D2.1. Our design of CSI will be revisited in 

deliverable D3.2 and will be based on requirements from D2.2.  

Apart from the design, this document provided the first specification of SmartEdge Schema. This 

schema formally defines important concepts of the SmartEdge architecture, which are used in 

swarm formation and execution. Further on, we defined a Recipe Model as a means to create 

swarm applications based on compositions of one or more things or IoT offerings. We have 

started the implementation of a low-code tool for configuring and orchestrating applications 

based on the Recipe Model. In order to process data from IoT devices in a unified way, we have 

identified protocols and standardized information models to be used in our implementation of 

use case demonstrations. We conducted interviews with use case owners to specify 

requirements for Standardized Semantic Interfaces (in addition to requirements from D2.1). We 

also proposed the design of the SmartEdge DataOps toolbox supporting the continuous 

integration of things and applications through the standardized semantic interfaces. The 

approach enables interoperability solutions based in a declarative and low-code manner. 

The successor of this deliverable, i.e., D3.2 will also provide the first implementation of tools for 

Continuous Semantic Integration. The first implementation of CSI will be extended with the Low-

code Programming Tools for Edge Intelligence from WP5 and will be used for the 

implementation of use case demonstrations in WP6.   
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