
D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

1

SmartEdge
 Semantic Low-code Programming

Tools for Edge Intelligence
This project is supported by the European Union’s Horizon RIA research

and innovation programme under grant agreement No. 101092908

Deliverable D4.1

Design of Dynamic and Secure

Swarm Networking

Editor N. Zilberman (UOXF)

Contributors H. Chen, D. Ding, C. Zheng (UOXF), R. Abu Bakar, F.

Cugini, L. Ismaeel, M. Mtiri, F. Paolucci, D. Uomo (CNIT),

J. J. Vegas Olmos, F. Alhamed (NVIDIA) P. Cudré-

Mauroux, A. Lerner (FRIB), D.M. Nguyen, D. Le Phuoc, A.

Le Tuan (TUB)

Version 1.0

Date 31st January 2024

Distribution PUBLIC (PU)

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

2

DISCLAIMER

This document contains information which is proprietary to the SmartEdge (Semantic Low-code

Programming Tools for Edge Intelligence) consortium members that is subject to the rights and

obligations and to the terms and conditions applicable to the Grant Agreement number

101092908. The action of the SmartEdge consortium members is funded by the European

Commission.

Neither this document nor the information contained herein shall be used, copied, duplicated,

reproduced, modified, or communicated by any means to any third party, in whole or in parts,

except with prior written consent of the SmartEdge consortium members. In such case, an

acknowledgement of the authors of the document and all applicable portions of the copyright

notice must be clearly referenced. In the event of infringement, the consortium members

reserve the right to take any legal action it deems appropriate.

This document reflects only the authors’ view and does not necessarily reflect the view of the

European Commission. Neither the SmartEdge consortium members as a whole, nor a certain

SmartEdge consortium member warrant that the information contained in this document is

suitable for use, nor that the use of the information is accurate or free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is provided as is and no guarantee or warranty is given that

the information is fit for any particular purpose. The user thereof uses the information at its sole

risk and liability.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

3

REVISION HISTORY

LIST OF AUTHORS

Revision Date Responsible Comment

0.1 November 5, 2023 N. Zilberman (UOXF) ToC

0.2 January 10, 2024 N. Zilberman (UOXF) Partner contributions

1.0 January 31, 2024 N. Zilberman (UOXF) Final version

Partner Name Surname

UOXF Noa Zilberman, Damu Ding, Changgang Zheng, Hongyi Chen

CNIT Filippo Cugini, Mohamed Mtiri, Francesco Paolucci, Layal Ismaeel, Domenico

Uomo, Rana Abu Bakar

NVIDIA Juan Josè Vegas Olmos, Faris Alhamed

TUB Duc Manh Nguyen, Danh Le Phuoc, Anh Le Tuan

FRIB Alberto Lerner, Philippe Cudré-Mauroux

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

4

GLOSSARY

Acronym Description

ACC accuracy

ACK Acknowledgment

ACL Access Control List

AP Access Point

AUC Area Under the ROC Curve

BMV2 Behavioral model version 2

BT British Telecom

CDF Cumulative distribution function

CNN Convolutional Neural Networks

CP Control Plane

CPU Central processing unit

DDoS distributed denial-of-service

DDS DDoS Detection System

DHCP Dynamic Host Configuration Protocol

DL Deep Learning

DP Differential Privacy

DPDK Data Plane Development Kit

DPI Deep packet inspection

DPU Data Processing Unit

DT Decision Tree

FL Federated Learning

FNR false negative rate

FTG Flow Traffic Graph

GNN Graph neural network

GRU Gated Recurrent Unit

ICMP Internet Control Message Protocol

ID Identifier

IDS Intrusion detection and prevention system

ILP integer linear programming

INT In-Band Telemetry

IoT Internet of Things

ITS Intelligent Transportation System

ISP Internet service provider

KM k-means

MAC Media Access Control

ML Machine Learning

M/A match-action

NB Naïve Bayes

NIC Network Interface Card

NN Neural Network

PDP programmable data plane

P4 Programming Protocol-independent Packet Processors

QoS Quality of Service

RF Random Forest

RSU Road-side unit

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

5

RTT Round Trip Time

SQL Structured query language

SVM Support Vector Machine

TCP Transmission Control Protocol

UC Use Case

TPR true positive rate

UDP User Datagram Protocol

URLLC ultra-reliable low-latency communications

UUID Universal Unique Identifier

VLAN Virtual local area network

VNID VXLAN Network Identifier

VXLAN Virtual Extensible LAN

WP Work Package

XGB XGBoost

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

6

EXECUTIVE SUMMARY

Deliverable 4.1 is the first iteration of the Dynamic Swarm Networking technical Work Package.
The Work Package combines three tasks: (1) Automatic discovery and dynamic network swarm
formation (2) Embedded network security and isolation and (3) Hardware accelerated in-
network operations.
These three intertwined tasks lead the way to enabling the networking layer of the SmartEdge
project and for providing high performance and low latency operation by providing innovative
network-programmability based solutions.
By considering the requirements set in SmartEdge’s global architecture, and building upon the
SmartEdge use cases, an initial architecture of the Work Package is proposed. The architecture
covers how SmartEdge swarms are formed and managed, what are the network security
considerations and how to implement active security techniques within the network layer, and
how programmable network devices can be used to accelerate SmartEdge operation.
SmartEdge aims to demonstrate how adaptable, but resilient, swarms can operate
autonomously at the edge offering innovative practical solutions in the daily life of people in
specific set of representative Use Cases.
In the following sections we identify building blocks in the architecture of the Work Package,
and describe the planned design of each component, as well as present preliminary results.
By enabling these building blocks, we aim to provide valuable insights into the development of
a dynamic, scalable, secure and high-performance solution for decentralized edge intelligence
in swarms, ultimately contributing to the project’s objectives. The solution provided by the Work
Package will enable SmartEdge’s use cases and support their operation. These will be validated
by the SmartEdge Integration work package as part of the Use Cases evaluation environment.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

7

TABLE OF CONTENTS

TABLE OF CONTENTS ... 7

1 INTRODUCTION ... 9

1.1 Overview .. 9

1.2 Objectives .. 9

1.3 Requirements .. 10

1.3.1 Swarm Management ... 10

1.3.2 Swarm Communication ... 12

1.3.3 Hardware and Protocols .. 13

1.3.4 IDM and Policy & Security .. 13

1.4 KPI .. 14

1.5 Structure of the Document .. 15

2 High Level Architecture ... 16

2.1 Programmable Network Devices and P4 ... 17

3 Automatic Discovery and Dynamic Network Swarm formation ... 18

3.1 P4 data plane programmability for swarm formation ... 18

3.1.1 Swarm discovery and inclusion .. 19

3.1.2 Controlled swarm exit .. 19

3.1.3 Unexpected swarm exit and recovery ... 20

3.1.4 Cohesiveness and isolation .. 20

3.2 Architecture of SmartEdge network layer ... 21

3.3 Innovative Telemetry system ... 21

3.3.1 Architecture of the telemetry system .. 21

3.3.2 Preliminary implementation of the SmartEdge In-Band Telemetry solution 22

3.3.3 Design and preliminary implementation of the SmartEdge Telemetry Collector 23

3.4 Swarm discovery .. 25

3.5 P4 Switch ... 26

4 Embedded network security and isolation .. 28

4.1 Programmable Access Control for Swarm Intelligence .. 28

4.2 ML-driven In-network Defense .. 29

4.3 Runtime Model Update For In-network Defence .. 30

4.3.1 Framework ... 30

4.3.2 Implementation ... 31

4.3.3 Preliminary Results .. 32

4.4 Federated In-network Defense .. 34

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

8

4.4.1 Design .. 35

4.4.2 Implementation ... 35

4.4.3 Preliminary Results .. 36

4.5 Hierarchical Flow-to-Traffic Graph Neural Network for DDoS Attack Detection 37

4.5.1 Graph Structure for DDoS Attack Detection .. 38

4.5.2 FTG-Net Hierarchical Model Architecture ... 39

4.5.3 Results ... 40

5 Hardware-accelerated in-network operations .. 42

5.1 Distributed In-network Operations .. 42

5.1.1 Introduction and motivation .. 42

5.1.2 Distributed In-Network Computing Workflow ... 43

5.1.3 Framework Implementation .. 43

5.1.4 Preliminary Results .. 45

5.2 Hardware-accelerated DDoS Detection using Convolutional Neural Networks (CNNs) on

DPU 47

5.2.1 Introduction and motivation .. 47

5.2.2 Background .. 48

5.2.3 Proposed Methodology Hardware-Accelerated Framework 48

5.2.4 Implementation ... 49

5.2.5 Results ... 50

5.3 Intelligent Road Side Unit .. 52

5.3.1 Background .. 52

5.3.2 SmartEdge Intelligent RSU ... 52

5.3.3 LiDAR Processing Acceleration ... 53

6 Conclusions .. 54

7 References ... 55

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

9

1 INTRODUCTION

1.1 OVERVIEW
The Dynamic and Secure Swarm Networking Work Package, also known as Work Package 4

(WP4), covers aspects of the SmartEdge project that are responsible for the communication

between the SmartEdge system components and for development of swarm intelligence within

the network.

The Work Package covers three networking related aspects: automatic discovery and dynamic

network swarm formation, embedded network security and isolation and hardware accelerated

in-network operations. The three parts, translated into three development tasks, are

intertwined and closely integrated, with elements developed under one task being used or

accelerated under another task.

To position the Work Package, it is located above the physical layer of the network, and below

the software application layer (or middle layer). The Work Package uses existing physical layer

communications protocols (e.g., 4G/5G, wireless protocols) as-is, while building upon emerging

network programmability to introduce innovation from the network layer (layer 3 in the OSI

model) and above. By offloading operations previously done on servers or in the cloud, it aims

to increase performance, reduce latency and introduce novel functionality.

1.2 OBJECTIVES

WP4 has three objectives:

1. Automatic Discovery and Dynamic Network Swarm formation in near real time –

providing the functionality required to create a swarm of SmartEdge devices, including

adding, maintaining and removing nodes. This functionality will happen during

operation time based on communication between devices, and is not based on a pre-

set list of devices.

2. Embedded network security and isolation – providing network security for nodes that

are part of the swarm, including protection against common network attacks (e.g.,

DDoS) and detection and mitigation of anomalies and emerging attacks. Note this does

not cover end-to-end security (e.g., application level). The tasks also isolate swarm

communication from nodes outside a swarm.

3. Hardware-accelerated in-network operations for context-aware networking – providing

acceleration to SmartEdge functionality by offloading it to run within the network. This

functionality will range from network security to acceleration of stream processing,

while building upon emerging network-hardware technologies such as DPUs.

The scope of WP4 is illustrated in Figure 1.1. As the figure shows, the functionality provided by

the Work Package is distributed across the SmartEdge network, providing intelligence within the

network for swarm formation, network security and context-aware acceleration.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

10

Figure 1.1 High Level View of Dynamic and Secure Swarm Networking

While Use Case 2 (UC-2) is depicted in the figure, the Work Package will support a range of

SmartEdge Use Cases, with a focus on nodes dynamism, rapid response time and high

performance.

1.3 REQUIREMENTS
The requirements for WP4 are set by the over-all architecture of the SmartEdge project as

defined by WP2. The detailed list of requirements, their related Use Cases and the priority set

by the Use Case owners is provided below.

1.3.1 Swarm Management

ID Partner Short

Name

Related Use

Case(s)

Priority

SW-003 A swarm coordinator is a swarm smart-node that must support the advanced

functionality necessary to form and maintain a swarm. For example, the ability

to onboard or offboard nodes to and from the swarm, or in UC5 the provide

medical staff with such node that support coordination, holistic management,

and monitoring of a group of patients represented by their swarm nodes.

DELL, IMC UC-3, UC-5 High

SW-004 A manifest swarm must consist of one or more swarm smart-nodes and at least

one of those smart-nodes must be a swarm coordinator. Typically, the swarm will

consist of two or more swarm smart-nodes, but during swarm formation or

reformation there may only be one seed swarm smart-node that will enlist other

nodes into the swarm, to perform the desired behaviour.

DELL, IMC UC-3 High

SW-007 The swarm coordinator(s) must maintain the state of the swarm. For example,

which nodes are part of the swarm.

DELL UC-2, UC-3 High

SW-008 Swarm smart-nodes must reach a consensus on any action that affects the

swarm. For example, the swarm smart-nodes must agree on the offboarding of a

new node from the swarm. If a smart-node (A) requests to leave the swarm, but

another smart-node (B) is relying on it to perform some operation, then smart-

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

11

node (B) must have the opportunity to request smart-node (A) to remain in the

swarm. There may be exceptions to this rule, e.g., if all swarm coordinators agree

to eject a node (C) from the swarm, then node (C) cannot block this action.

DELL UC-3 Medium

SW-011 A swarm smart-node (A) must have the right to leave a swarm if it chooses, but

another swarm swarm-node (B), can request it to remain if it needs the assistance

of smart-node (A). Smart-node (A) must then decide if it stays or leaves the

swarm.

DELL, IMC UC-3, UC-5 Medium

SW-012 A swarm node may belong to more than one swarm at the same time. For

example, when a node is providing a sensor stream that could be of use to

multiple swarms. However, there must be no crossover of information between

the swarms, as this could lead to a possible attack vector, or at the very least a

leakage of swarm information. A shared node should never be the target of

actuator commands, as this could lead to conflicting actions between swarms.

DELL, IMC UC-3, UC-4, UC5 High

SW-013 A swarm coordinator should only belong to one swarm at a time. There may be

exceptions where it is desirable, or even required, for a swarm smart-node to

orchestrate more than one swarm. For example, when two swarms must

collaborate to achieve a common objective, but this is likely to be the exception

rather than the rule.

DELL, IMC UC-3, UC-5 Medium

SW-014 A protocol must exist to onboard a smart-node into a swarm.

DELL, IMC UC-3, UC-5 High

SW-015 A protocol must exist for a smart-node to request to join a swarm.

DELL, IMC UC-3, UC-5 High

SW-016 A protocol should exist for a swarm to broadcast a request for a smart-node with

a specified set of capabilities to join the swarm. Based on the responses received,

the swarm will select a candidate and onboard the smart-node. This feature is

particularly important for when a swarm is missing a critical smart-node to enable

an operation to be performed. It may be useful for the responding smart-nodes

to offer a time limited option to join the swarm. When the option expires there

is no obligation for them to join the swarm.

DELL, IMC UC-3, UC-5 Medium

SW-017 There may be cases where a device (A) in a swarm may object to a device (B)

joining the swarm. For example, if device (A) has prior knowledge of the

untrustworthiness of device (B). In this case device (B) is not allowed to join the

swarm. There may be some limits or time constraints on device (A) objecting to

device (B).

DELL UC-3 Low

SW-019 A swarm must handle units disappearing without proper protocol due to network

failure or similar external factors.

Aalto, IMC UC-2, UC-3, UC-5 High

SW-020 Standard protocol for accepting new smart-nodes to swarm has to be defined for

SmartEdge capable vehicles.

Aalto, IMC UC-2 High

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

12

SW-022 The swarm smart-nodes and the swarm must have a universally unique identifier

(e.g., UUID), encoded in the form of a URI. In many use cases when assigning a

URI to a smart-node it is not possible to have a single controlling agency to issue

the URI or provide an Internet (or even intranet) resolvable URL. Whilst UUIDs

have no implicit meaning, but simply strings of hexadecimal characters, they do

(for all intents and purposes) guarantee that the resource is uniquely identified.

DELL UC-3 High

SW-027 A cloud or brown field system can be part of a swarm and could be regarded as a

type of swarm node with its own specific capabilities. This may be necessary if

the swarm needs to communicate with legacy systems or use their resources. For

example, to transfer data for long-term storage or deep data analysis.

DELL UC-3, UC-4 High

SW-028 To keep latency low the Cloud should not take on the role of swarm coordinator

or orchestrator. The Cloud should implement the SmartEdge stack but may be

restricted to only certain swarm protocols. There may be challenges if the Cloud

has too much control over the swarm.

DELL UC-3 High

1.3.2 Swarm Communication

ID Partner Short Name Related Use

Case(s)

Priority

SC-

002

SmartEdge must provide a procedure so that a Swarm can communicate events about

its state to swarm participants that registered for certain swarm events.

FhG, BOSCH, IMC,

DELL

UC-1, UC-3, UC-5 High

SC-

003

It must be possible to register for application specific events that can be published by

SmartEdge applications. The events must support application specific data if the

application needs to communicate payload data.

FhG, IMC, DELL UC-1, UC-3, UC-5 High

SC-

006

Events should contain data about the creation source, time, and date.

FhG, BOSCH, IMC,

DELL

UC-3, UC-5 High

SC-

008

Internal swarm communications must be limited to only current nodes in the swarm,

e.g., information about the swarm must not leak out of the swarm or be sent to nodes

that have been offboarded from the swarm.

DELL, IMC UC-3, UC-5 High

SC-

012

A network node join message must be implemented for a swarm to request an

external smart-node to join a swarm, or an external smart-node requesting to join a

swarm. This would typically follow a network node characteristics message, where

the swarm has identified a suitable smart-node and is requesting it to join the swarm.

Alternatively, it could be used by a smart-node that has discovered a swarm and

wishes to join it.

DELL, IMC UC-3 High

SC-

013

A network device leave message must be implemented for a swarm device to request

to leave a swarm it is currently part of. This message must be broadcast to all other

members of the swarm.

DELL UC-3 High

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

13

SC-

014

A network node remain message must be implemented for a swarm smart-node to

request a leaving smart-node to remain in the swarm as it needs its services.

DELL, IMC UC-3 Medium

SC-

024

Smart-nodes in a swarm must regularly exchange heartbeat messages to other smart-

nodes in the swarm. Rather than each smart-node communicating to each other

smart-node in the swarm, smart-nodes may syndicate recent heartbeat messages

they have received. In this way other smart-nodes, and in particular the swarm

coordinator(s), can assess the cohesion of the swarm without having to constantly

communicate with other members of the swarm.

DELL UC-3 High

SC-

025

When a swarm coordinator sends a heartbeat message, the message should contain

a hash of its swarm state. Smart-nodes can cache the hashes from the swarm

coordinator(s), to identify if the swarm state changes. If swarm coordinator (A)

detects that swarm coordinator (B)’s state has changed, it will immediately initiate a

swarm update to reconcile the two states.

DELL UC-3 Medium

SC-

026

Smart-node heartbeat messages should never be propagated outside of the swarm.

Where a node is shared between several swarms or a Cloud is part of a swarm, they

should not provide a bridge for heartbeat message.

DELL UC-3 Medium

1.3.3 Hardware and Protocols

ID Partner Short

Name

Related Use

Case(s)

Priority

HP -

002

Vehicles communicating via C-ITS/G5 devices and without SmartEdge SW stack

should be able to connect to the Swarm as “dummy” devices.

Aalto UC-2 High

HP-013 The SmartEdge components system must be able to run on ARM-based hardware

and Ubuntu/Linux OS.

Aalto, DELL UC-2, UC-3 High

HP-015 The SmartEdge components system must be able to run on x86-based hardware

and Ubuntu/Linux OS.

DELL UC-3 High

1.3.4 IDM and Policy & Security

ID Partner Short

Name

Related Use

Case(s)

Priority

IDM-
001

The visibility of events must be restricted to application, user, “swarm”, or public

level roles according to the system groups controlled by the swarm admin.

FhG, IMC, DELL UC-2, UC-3, UC-5 High

IDM-

002

A swarm can be created within a private secure environment where all nodes are

belonging to the same owner. Nodes of other owners cannot join the swarm.

FhG, IMC, DELL UC-1, UC-2, UC-3,

UC-4, UC-5

High

IDM-
004

Swarms must have the means to detect, monitor and mitigate cyber-attacks. This

involves monitoring suspicious behaviour and providing the means to isolate

compromised devices and block hostile network traffic.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

14

ERCIM, IMC, DELL UC-1, UC-2, UC-3,

UC-4, UC-5

High

IDM-
005

Swarms must report suspected cyber-attacks and system failures.

ERCIM, IMC, DELL UC-1, UC-2, UC-3,

UC-4, UC-5

High

IDM-

006

Swarms should support the means to securely transfer critical participant roles to

ensure robust operation of the swarm as a whole, for instance, when a device fails,

or is compromised in a cyber-attack, or when the device is scheduled for hardware

replacement or a lengthy software update.

ERCIM, IMC, DELL UC-1, UC-2, UC-3,

UC-4, UC-5

Medium (with WP5)

IDM-
013

Encryption of data in transit using hardware acceleration. This is particularly

important when data is being transported across a publicly accessible fabric, such

as the Internet.

ERCIM UC-2, UC-3 High

IDM-
019

Communications emanating from the swarm should appear to come from the

swarm and not a specific device, i.e., the internal structure of the swarm should not

be ascertainable from its external communications.

IMC UC-2, UC-5 High

IDM-
022

The swarm, and particularly the swarm coordinator(s), should constantly monitor

the behaviour of swarm nodes to look for aberrant behaviour, either due to

malfunction or malicious intent. For example, a smart-node (A) may incorrectly

syndicate to other smart-nodes in the swarm that it has received heartbeat

messages from another smart-node (B), when it has not. Where practical, the

swarm should try to corroborate swarm information from other smart-nodes, and

isolate smart-nodes that are shown to be untrustworthy.

DELL UC-2, UC-3 Medium

1.4 KPI
The Key Performance Indicators (KPI) associated with the project are the following:

K3.1: time required to perform automatic discovery and dynamic network swarm formation,

reduced by 60% thanks to HW-accelerated in-network operations compared to regular

processor-based execution.

K3.2: Increase performance by enabling in-network processing to reduce end-to-end latency (by

50% or more, assuming propagation delay is not the dominant component) and reduce

variability.

K3.3: Provide isolation to data streams and a distributed security barrier for smart anomaly

detection (80% or more of events detected and mitigated within the network, with 97% accuracy

/ F1 score >90%, detection provided in 1μs by ML algorithms (e.g., decision tree) optimized to

run on Deep Processing Unit (DPU), >100x faster wrt. CPU baseline.

K3.4: Enable distributed operation of a large number of heterogeneous IoT devices and smart

systems (1K devices or more handled by the DPU only, in-line with expected number of

devices/vehicles to be considered in the SMARTEDGE scenarios) to achieve higher resilience.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

15

1.5 STRUCTURE OF THE DOCUMENT
This document is organized as follows: Section 2 provides a high-level architecture of the

solution developed in WP4. Section 3 introduces the solution for automatic discover and

dynamic swarm formation. Section 4 focuses on the design for embedded network security and

isolation. Section 5 discusses hardware accelerated in-network operations. Section 6

summarizes the document. Section 7 provides the list of references used in this document.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

16

2 HIGH LEVEL ARCHITECTURE

 WP4 is divided into three tasks, each line aligned with one of the objectives. The tasks are:

T4.1. Automatic Discovery and Dynamic Network Swarm formation in near real time

T4.2. Embedded network security and isolation

T4.3. Hardware-accelerated in-network operations for context-aware networking

The three tasks and their relations are illustrated in Figure 2.1.

Figure 2.1: High Level Architecture of WP4

Task 4.1 (T4.1, marked A in the figure) is responsible for the formation of the swarm. It detects

new nodes and decides if and how to add them to the swarm. To this end, the task uses an in-

band communication channel and offers innovation in intelligent network telemetry and its

processing.

Task 4.2 (T4.2, marked B in the figure) is responsible for embedded network security and

isolation. The task innovates in moving network security intelligence into network devices,

primarily using in-network machine learning (ML) for anomaly detection. The task is responsible

to mitigate detected threats and to isolate traffic streams from different sources, so that nodes

outside the swarm cannot interfere with its operation.

Task 4.3 (T4.3, marked C in the figure) is responsible to accelerate SmartEdge functionality using

hardware-based acceleration, with a focus on the acceleration of stream processing and

network security applications.

The three tasks are intertwined, with information exchanged between the different parts of the

Work Package. T4.1 shares both swarm membership and status information with other tasks,

allowing isolation of communication within the swarm by T4.2. Task 4.1 also shares telemetry

information, used as features in the ML based anomaly detection of T4.2. T4.2, in turn, reports

anomalous nodes behavior, used to isolate malfunctioning nodes and exclude malicious ones

from the swarm by T4.1. T4.3 enhances the functionality of both tasks by providing hardware

acceleration, improving performance toward KPI goals, while stream processing acceleration

supports the overall functionality of SmartEdge and intersects with WP5.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

17

2.1 PROGRAMMABLE NETWORK DEVICES AND P4
Software-defined networking (SDN) decouples the operational planes of network devices,

primarily separating the data plane from the control plane. While SDN supports network

programmability it assumed fixed or reconfigurable data plane functionality. The introduction

of programmability into the data planes, in devices such as Intel Tofino and NVIDIA Spectrum 2,

has enabled changing the functionality of the data plane by users. The programmability enables

network applications to be executed in an in-network manner, meaning that the program is

implemented and executed within the data plane.

Programming Protocol-Independent Packet Processors (P4) is a domain-specific language used

by programmable network devices. It allows to customize packet parsing and forwarding while

being protocol independent. Combined with runtime API it allows flexible interaction between

the programmable data plane and control plane, thereby enabling coordination between the

control logic and packet processing logic.

The SmartEdge project builds upon the P4 language and programmable network devices to

enable innovation under WP4. The WP takes programmable network devices a step further than

their original design, enabling intelligence, including machine learning, within the devices,

providing new and innovative functionality.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

18

3 AUTOMATIC DISCOVERY AND DYNAMIC NETWORK SWARM

FORMATION

This section reports on the first design and preliminary implementation choices of task T4.1, i.e.,

the innovative SmartEdge solution providing automatic discovery and dynamic network swarm

formation. In particular, this section complements D2.2 by focusing on the SmartEdge Network

Layer highlighted in Figure 3.1. In order to provide a more concrete and detailed description of

the adopted solution, Use Case 3 on smart factory mobile robotic is used as a leading example.

Figure 3.1: SmartEdge smart-node layers

3.1 P4 DATA PLANE PROGRAMMABILITY FOR SWARM FORMATION
Figure 3.2 depicts the strategic direction of automatic swarm formation, which involves

providing data plane programming capability using P4 Language to all components in the

factory, including mobile robots, racks, cameras, and IoT edge gateways. This allows for efficient

processing of necessary communications between these components. For example, if cameras

detect an unexpected object in their area and require urgent action, a P4-programmed protocol

message can be sent to trigger appropriate responses. Similarly, if mobile robot 1 intends to load

rack 1 with a specific trajectory, a message must be sent to other robots in the area to prevent

collisions. However, mobile robot 1 may not have knowledge of which robots are present in the

area. Hence, data plane programmability plays a crucial role in detecting the elements within

the area by facilitating communication of relevant messages. Subsequently, the swarm

intelligence system can analyze the received messages and inform the algorithm that controls

the motion planning of the robots. The algorithm takes into consideration the position of the

detected object and adjusts the motion plans of nearby robots to avoid collisions. This could

involve slight alterations in the motion plans of one robot, slowing down of another, or even

temporary halting of a robot for a brief period. The integration of swarm intelligence using P4

ensures that the components in the factory work cohesively to minimize the risk of collisions

and facilitate effective communication among different elements. This can significantly enhance

the productivity and efficiency of the factory by facilitating seamless data sharing and

collaboration among devices. Ultimately, this collaborative approach can substantially reduce

the occurrences of downtime, incidents, and other issues that may arise in industrial settings.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

19

Figure 3.2: Smart factory utilizing P4 network layer swarm formation and management.

3.1.1 Swarm discovery and inclusion

In order to discover other devices, including their capabilities, and enlist them into the swarm

intelligence system, the P4-based system may be programmed as follows:

1. Defining a custom discovery protocol using P4 that allows mobile robots, racks, cameras,

and IoT edge gateways to exchange discovery messages periodically with each other to

build a network topology. This protocol should define the format and semantics of the

messages, including fields for device capabilities (such as whether the device is a robot,

a camera, or an IoT edge gateway, and what sensors, actuators, or processing

capabilities it has) and its location.

2. Programming the programmable switches using P4 to listen for discovery messages on

the network and to extract the relevant metadata about device capabilities and

locations. The switches should also update their forwarding tables based on the location

information of the devices, in order to facilitate communication within the swarm

intelligence system.

3. Using the extracted capability and location metadata to build a logical map of the factory

floor that can be used by the swarm intelligence system to coordinate the activities of

mobile robots, racks, cameras, and IoT edge gateways.

Implementing the protocol in P4 could involve defining the message headers and fields, as well

as the processing logic in the P4 switch. For example, a P4 switch could use a combination of

match-action tables and stateful processing to route discovery messages to their destination

devices.

3.1.2 Controlled swarm exit

To allow mobile robots or other devices to exit the swarm intelligence system in a controlled

manner the following steps are identified:

1. Using the previous discovery protocol to signal their intention to exit. This message will

include fields for the identity of the device, any pending tasks, and other necessary

contextual information.

2. Programming the wireless programmable switches in the network with P4 to listen for

the custom control messages for exiting devices. The switches should remove the exiting

devices from their forwarding tables to prevent any further communication between

them and the other devices in the swarm intelligence system.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

20

By using P4 to create this custom control message format, devices in the swarm intelligence

system can communicate with each other effectively and efficiently. This helps ensure that all

devices are aware of each other’s intentions and can adapt to changes in the system in real-

time. By including specific information, such as pending tasks, the system can ensure that any

unfinished work is reassigned to other devices, preventing work duplication or lost work.

3.1.3 Unexpected swarm exit and recovery

To enable the swarm intelligence system to automatically recover if a swarm device is

unexpectedly lost, the following steps can be taken:

1. Define a mechanism to detect when a device is lost, such as by using a telemetry system

with IoT edge gateways and cameras that can report on the status of the devices within

the network. This mechanism should identify when a device is no longer responding or

is otherwise experiencing issues.

2. Program the programmable switches using P4 to update their forwarding tables and

topology information to exclude the lost device's information automatically.

3. The switches should reroute traffic to other available devices in the system to ensure

efficient communication.

4. Configure the swarm intelligence system to initiate automated routines to replace the

lost device with a new device so that it can integrate into the swarm intelligence system

as a backup.

By defining and implementing suitable mechanisms to detect lost devices and automated error

remediation routines using the P4 language architecture, devices within the network can

continue to work even in the presence of device loss. These implementations enable network-

wide fault tolerance and resiliency, which can lead to a more reliable and efficient swarm

intelligence system.

3.1.4 Cohesiveness and isolation

A P4-based swarm telemetry system (either in-band or out-of-band) is able to check the

presence and status of the mobile robots or other devices within the swarm intelligence system,

allowing it to maintain its cohesiveness. The monitoring of the swarm intelligence system

continuously for signs of deviations from optimal performance to detect disconnections from

mobile robots or other devices.

Key metadata metrics are in this case:

a. The geolocation information of the device, that may be used to forecast its trajectory

and allowing anticipating future swarm operation

b. The device state, for example in terms of battery level or computational resources.

Swarm isolation, also covered by T4.2, can be achieved using a firewall or whitelist programmed

in P4 that can filter out swarm-specific communication. Specific header fields identify swarm-

specific communication (e.g., swarm ID, device ID, and message type).

Each outgoing message from a swarm device must contain these header fields. Additional

match-action tables look for these header fields and take action based on the information they

contain. A firewall function can be programmed to drop any messages that contain swarm-

specific header fields if they are detected outside of the swarm, by relying on geolocation

metadata. This approach can help protect the swarm from outside attacks and preserve the

integrity of data exchanged within the swarm.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

21

3.2 ARCHITECTURE OF SMARTEDGE NETWORK LAYER
Figure 3.3 depicts the key functional components of each swarm node related to the innovative

SmartEdge swarm networking technology: the P4 switch and the Smart-node Network Control

Plane (CP) Layer.

The P4 switch forwards all communication messages. It leverages tunneling technology, such as

VXLAN, to guarantee isolation. In addition, it inserts/extracts in-band telemetry to

provide/retrieve detailed and timely information about the swarm node state. Furthermore, it

implements optional reliable communication functionalities, such as 1+1 protection.

The Smart-node Network Control Plane (CP) Layer manages the swarm formation from the

networking perspective. It then enforces forwarding rules to the P4 switch.

Figure 3.3: SmartEdge Reference scenario

3.3 INNOVATIVE TELEMETRY SYSTEM

3.3.1 Architecture of the telemetry system

SmartEdge designs an innovative in-band telemetry-driven technology for dynamic network

swarm formation. In-Band Telemetry (INT), originally designed for data center operations, is

here activated from all swarm nodes. The goal is to monitor the experienced performance also

including the wireless segment (either wi-fi or 5G). This way, continuous and accurate end-to-

end network awareness can be obtained, e.g., in terms of e.g. end-to-end latency or operational

status.

Indeed, compared to traditional INT, additional metadata are enforced, such as localization and

system/application parameters with low age of Information, thus providing system/application-

level information that will trigger dynamic in-network functions. For example, INT augmented

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

22

with CPU load and localization information have the potential to trigger dynamic rerouting and

offloading towards more suitable nearby edges just operating at network level only. Telemetry

will also feed local control loops and AI algorithms for predictive networking against QoS

degradations and dynamic operations for dynamic network swarm formation.

The SmartEdge packet header including INT has been designed with the following structure:

• Ethernet header (14bytes)

• IPv4 header (20bytes)

• UDP header (8bytes)

• Shim header (4bytes)

• INT header (8bytes)

• INT data (36 bytes)

The INT data field has been designed with a combination of traditional metadata and innovative

ones (in Italic):

• Switch ID: 32bit

• Ingress Timestamp: 48bit

• Egress Timestamp: 48bit

• Hop Latency: 32bit

• Flow Id: 16bit

• CPU: 16bit

• Latitude: 32bit

• Longitude: 32bit

• Received Signal Strength Indicator (RSSI): 32bit

It is important to highlight that at this stage of the project no final decisions have been made

and specific fields can still be added (e.g., status of the battery of mobile robots) or removed

(RSSI, if not reliable in indoor complex environments) also considering specific use case needs

or according to the evolution of the whole SmartEdge solution.

3.3.2 Preliminary implementation of the SmartEdge In-Band Telemetry solution

A preliminary implementation of the proposed INT solution is in progress. INT is inserted by each

swarm node. At the access point, INT is extracted and forwarded to a telemetry collector. INT

can be either removed by the access point or updated with its metadata. In the latter case, INT

is removed by the destination swarm node which gets visibility of the entire end-to-end

communication.

Figure 3.4 shows the Wireshark capture of a packet exchanged among swarm nodes and

including a first implementation of the proposed SmartEdge INT solution

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

23

Figure 3.4: Wireshark capture of a packet exchanged among swarm nodes and including a preliminary

implementation of the proposed SmartEdge telemetry system

3.3.3 Design and preliminary implementation of the SmartEdge Telemetry Collector

Figure 3.5: Exchange of Telemetry data towards the telemetry collector

The telemetry collector receives INT data from the Access Point. In particular, the P4 switch

implemented at the access point once it receives packets data including INT, it removes payload

information and forwards INT extra-header to the telemetry collector.

The collector stores the last data about a link in a hash table and links it with the timestamp of

the last data received. The timestamp is useful for two reasons: (i) it allows to perform a filtering

on the arrival rate of the packets; (ii) enables the removal of obsolete data.

A preliminary implementation of the telemetry collector is in progress. It is written in python3.8,

using the library libpcap. It exploits a parallel thread that periodically checks on hash table for

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

24

expired data. The implementation enables the setting of the port on which the sniffer will listen

the incoming traffic. Furthermore, it can be adapted to forward received information on a SQL

database, NoSQL database or on an in-memory data structure for better performance. Specific

focus is devoted to the innovative SmaryEdge INT metadata, such as usage of resources (e.g.,

CPU), location and RSSI.

Figure 3.6: preliminary performance assessment of the Telemetry Collector

A preliminary performance test has been performed on the Telemetry Collector to check its

capacity and, thus, discover the traffic load that it can handle.

Those tests have been carried out using a traffic generator that periodically increments the

number of threads sending UDP packets. It starts with one thread sending 200 packets per

second, and finishes with 8 threads, sending 200 packets per second each. Each packets contains

3 INT headers that need to be read.

The aim of this test is to check whether the Telemetry Collector is able to keep up with this traffic

load, or, at a certain point, it will experience a drop in performance.

For this purpose, we estimate the output throughput of the collector and the variation of the

latency expressed as the difference between the generated packet time and the processing time

of the packets.

Every time a group of N threads finishes, before instantiating the group of N+1 threads, is

calculate average latency and average throughput.

In Figure 3.6 it is possible to see the test results as the incoming traffic increases. The first figure

does not show the absolute value of the latency since our aim is not to check the elapsed time

(that could be affected by a lack of synchronization between client and server) but to check

whether the performance gets worse as the traffic load increases. Thus we show the difference

between the average latency time experimented by a threads group and the global average

latency time.

As shown, the latency never diverges and remains in a range of [-5,+5] ms from the average

time.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

25

In the second graph, we plot the throughput of the collector (blue) and the ideal throughput of

the threads. Even in this case, the throughput of the collector keeps increasing linearly as the

throughput of the threads increases, and we can’t see a knee on the curve of the capacity.

This test thus shows that this collector, given this hardware, can handle at least 1600 packets

per second without saturation of capacity.

3.4 SWARM DISCOVERY
The SmartEdge swarm networking solution exploits Operating System features at the access

point (AP) to detect wi-fi clients and to provide IP configuration via DHCP. It is assumed the AP

has static IP and dedicated subnet.

The AP runs the SmartEdge P4 switch. Initially, no flow rules are configured. That is, no

forwarding among swarm-nodes is allowed. Once swarm nodes become part of the swarm,

traffic forwarding is enabled among swarm nodes. Furthermore, as anticipated, the AP forwards

INT data to the Telemetry Collector.

The Smart-node Network Control Plane layer manages the swarm networking packets for swarm

discovery, joining, heartbeat, and leave.

The joining operation has been designed as follows:

• The AP listens to swarm nodes as wireless (e.g., wi-fi) clients

• When a new node appears, the AP verifies it is authorized to join

• If authorized, the AP provides IP address through DHPC and stores info about all

connected nodes (e.g., MAC, IP)

• The AP associates related VXLAN connectivity to the P4 switch virtual ports

• The AP receives and accepts/rejects JOIN requests (Swarm node ID, skills) and stores

info about active swarm nodes (info shared with the middleware or embedded in P4)

• The AP enforces flow rules to the P4 switch to enable inter-swarm-node communication

(any to any within the swarm)

• The Swarm-node Network Control Plane layer at the AP informs the Middleware layer

about the new swarm member, providing node info such as SwarmID, IP and MAC

addresses, skills, etc

• The AP distributes the list of active swarm nodes to all nodes in the swarm

o upon changes (e.g., disconnection)

o periodically (heartbeat)

From the swarm node perspective, the joining operation has been designed as follows:

• The swarm-node receives IP configuration via DHCP

• The swarm-node runs the SmartEdge P4 switch configured with a pre-established flow

rule which indicates the Access Point as default gateway

• The P4 switch at the swarm node adds/removes INT metadata

The exit operation (controlled or uncontrolled) has been designed as follows:

• The AP removes the node from the list of active nodes

• The AP removes related VXLAN and flow entry

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

26

3.5 P4 SWITCH
A P4 switch is embedded in each swarm node to forward all communication messages. Swarm

networking messages are passed to the Smart-node Network control plane layer. Once the

swarm is operational, middleware/application packets are directly forwarded to the middleware

layer.

The switch can be implemented as a software switch (e.g., as a docker container) or in hardware

(i.e., ASIC). The former software solution is the one initially considered in SmartEdge for the

implementation and validation of the proposed swarm networking solution. In particular, the

selected switch platform for SmartEdge version 1 is BMV2 which provides full programmability

and flexibility even if forwarding performance does not enable extremely high throughput.

A P4 program preliminarily supporting the aforementioned telemetry system as well as the

proposed swarm discovery has been designed and preliminarily implemented, mainly to

understand if the performance limitations affecting BMV2 platforms would determine critical

constraints in the validation of swarm networking concepts.

The following preliminary performance measurements have been experimentally obtained (See

Tables 3.1-3.4):

• Hop Latency

o The contribution of the P4 switch in terms of hop latency is less than 0.6ms per

node.

o P4 switch introduces limited latency for processing INT compared to forwarding

without INT.

• CPU Load

o The processing of INT incurs a modest additional CPU load compared to the

overall performance required by the entire P4 switch in a simple forwarding

configuration.

o This additional load is approximately 2% at maximum for low rates and 7% at

maximum for high rates.

• Used Memory

o The system does not require excessive amounts of RAM in any operating

configuration.

o In the absence of the P4 switch container, the P4 system consumes around

260MB of RAM.

o The P4 switch container powered up with P4 code compiled without flow rules

enabled, requires approximately additional 18M.

o Activating the essential flow rules for forwarding and INT functionality incurs an

additional RAM demand of about 10MB.

Table 3.1: Latency contributed by P4 switch as a function of data rate (preliminary results)

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

27

Table 3.2: Effect of INT on round trip time (preliminary results)

Table 3.3: Effect of INT on CPU load when using P4 Switch (preliminary results)

Table 3.4: Amount of RAM consumed by P4 Switch under different packet rates (preliminary results)

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

28

4 EMBEDDED NETWORK SECURITY AND ISOLATION

Task T4.2 is responsible to provide network security and traffic isolation to SmartEdge nodes.

The Task interacts with T4.1, which creates and manages the swarm, and with T4.3, which

provides acceleration to functionality developed under this task.

Embedded network security in SmartEdge builds upon two contributions aspects:

• A novel P4 based layer of security that focuses on swarm requires and attends to threat

vectors relevant to SmartEdge use cases.

• An innovative intelligent threat detection and mitigation solution that attends to

emerging threats and anomalies.

The innovative solutions offered by SmartEdge are complemented by using industry-standard

security mechanisms, such as the use of traffic encryption and authentication protocols. These

are not developed by T4.2, and are only integrated in WP6.

4.1 PROGRAMMABLE ACCESS CONTROL FOR SWARM INTELLIGENCE
SmartEdge will use the P4 language to define a novel adjustable Access Control List (ACL) within

the P4 switch to enable swarm intelligence functionalities. Each node will have a unique

identifier (e.g., UUID) carried within the packet header, and only messages between nodes of

the same swarm can be exchanged. Any packets sent from low-reputation nodes or of

unauthorized protocol are dropped. Only the coordinator is capable of communicating with

nodes outside the swarm, such as nodes asking to join or coordinators of other swarms. In this

manner, SmartEdge will isolate network traffic streams belonging to different swarms.

To elaborate, the functionality supported for programmable network control will include the

following:

• A P4 switch will drop any traffic sent from malicious or low reputation nodes. Such nodes

will be identified through a blocklist controlled by the swarm coordinator, and

distributed to all P4 switches in the swarm. A blocked node can be identified by its UUID

or an identifier relevant to the use case, such as an IP address.

• Only approved protocols will be allowed within the swarms. Any traffic that is not of an

allowed set of protocols will be dropped.

• VXLAN will be used to provide traffic isolation between swarms, with each swarm using

a different VNID.

• In addition to VXLAN, for each incoming message the Swarm ID of both source and

destination nodes will be checked, as well as the role of the nodes. A packet will be

forwarded only if both source and destination are part of the same swarm, OR if one of

the nodes is the coordinator (allowed to communicate with nodes outside the swarm).

• Nodes that asked to join the swarm but have not been onboarded yet by the coordinator

will be allowed to communicate only with the coordinator, and only under constrained

conditions (e.g., rate limiting to avoid DoS attack on the coordinator).

The access control functionality described above is programmable and can be easily extended

by modifying the P4 switch program or by installing new rules during runtime.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

29

4.2 ML-DRIVEN IN-NETWORK DEFENSE
Network threats can rise unexpectedly, and given SmartEdge’s end-to-end low latency

millisecond scale requirements, threats can spread faster than cloud-based security analytics

can respond. This is particularly pressing in time-critical applications such set by Use Case 2 and

Use Case 3.

Threats are also evolving stealthily with changing patterns. Attackers exploit can botnets or alter

attack patterns to evade traditional security measures like firewalls, causing disruption of critical

services or impact on network infrastructure. Thereby, swift defenses against evolving attacks

are imperative to counteract potential widespread damage. Edge devices such as IoT gateways

close to swarm nodes play a vital role in defending against emerging threats before they spread.

SmartEdge uses programmable data planes to offload inference to network devices, called in-

network ML. It provides a novel approach to rapidly detect attacks and enforce actions in high-

speed switches with an extension to other network devices like IoT gateways. In-network ML

inference, a type of in-network computing, is the offloading of ML inference tasks from

servers/cloud to the data plane of network devices [Zhe22, Zhe23-1, Zhe24]. Unlike classical

practices of running ML training and inference solely on servers (potentially with GPUs) or in the

cloud, this approach offloads inference processes to pipeline logics in programmable data plane

within network devices (programmed in P4 language [Bos14]). Thus, ML inference runs

concurrently with packet switching. This empowers a direct ML-based identification of malicious

traffic and action enforcement within network devices, avoiding Round-Trip Times (RTT) for

cloud-based analysis. Moreover, reconfigurable pipelines in programmable data planes also

enable flexible defense in network devices. Traffic features can be flexibly parsed and in-

network ML inference model can be reconfigured to flexibly respond to emerging threats, unlike

classical solutions where ML models rely on predefined features from either monitoring

protocols [Pas21] or proprietary toolkits

SmartEdge’s innovation addresses several challenges in integrating in-network ML efficiently

and flexibly to enable fast and continuous attack detection and mitigation within IoT gateway.

First, the developed framework supports resource-constrained network devices. Second, there

it enables continuous collection and analysis of traffic features to learn emerging threats. Third,

it operates continuously to minimize maintenance costs and ensure uninterrupted service

delivery. As reconfiguring in-network ML functions requires data plane program recompilation,

potentially disrupting normal traffic in gateway during update, SmartEdge develops an

innovative solution that protects from traffic interruption.

Figure 4.1: Deploying P4Pir within an IoT gateway in SmartEdhe scenario

The solution used by SmartEdge, dubbed P4Pir, will operate within an IoT gateway with

programmable data plane on the network’s edge. It establishes a seamless workflow for

collecting traffic data, updating an in-network ML model, and employing data plane table rules

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

30

to detect/mitigate threats within the gateway. Specifically, the solution incorporates the

following three features: a) Swift in-network ML-based mitigation. We integrate in-network ML

inference into an IoT gateway, supporting fast threat defense as incoming traffic passes through

the pipeline. b) Continuous learning with proactive logging and labeling. We introduce proactive

traffic data logging and automated labeling to avoid manual intervention, enabling continuous

retraining of the in-network inference model and learning on emerging attacks. c) Seamless

updates of in-network inference model. We propose shadow table updates scheme to allow

seamless in-network model updates to identify emerging attacks, avoiding function

recompilation or forwarding disruptions in gateway.

4.3 RUNTIME MODEL UPDATE FOR IN-NETWORK DEFENCE
In-network ML deployment can reduce inference latency by offloading the inference process

from the controller to the data plane. Figure 4.2 (b) depicts how the innovative inference model

can be offloaded to data plane together with traffic forwarding logic. By training a model offline

and mapping the trained inference model to the data plane, malicious traffic can be labeled and

mitigated directly based on in-network inference results. Despite accurate detection and swift

mitigation, such an approach requires P4 program recompilation instead of runtime updates to

achieve continuous learning, interrupting packet forwarding.

Figure 4.2: (a) Traditional [Esk20] vs. (b) In-network ML deployment used in SmartEdge for traffic analysis and attack

detection.

Continuous learning of ML models is necessary to address potential data drift, change of feature

distribution or emerging malicious activities [Hin21]. SmartEdge integrates in-network ML

inference in IoT gateway and incorporates techniques to support timely ML-based attack

mitigation, as well as runtime updates for continuous and seamless model maintenance.

4.3.1 Framework

SmartEdge ML-based in-network defense framework engages the control plane for runtime

model updates without interrupting the existing processing on the gateway target.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

31

Figure 4.3: Block diagram of P4Pir workflow.

Figure 4.3 depicts P4Pir workflow. Step 1 shows a typical workflow of in-network ML-based

detection [Zhe22], where a trained model is mapped to Match/Action table rules and P4 code

to analyze the arriving traffic. On top of the existing in-network inference solution, as shown in

step 2, SmartEdge identifies suspicious traffic from incoming traffic. While benign traffic is being

forwarded, suspicious traffic will be dropped immediately and logged to the control plane by

encapsulating the extracted features in a digest (as in step 3). Based on these digests, it retrains

the current model to learn from the new traffic pattern (as in steps 4 & 5). A set of new rules

will be generated to map the parameters of the new model. Updated rules are then inserted

into the data plane and outdated rules are removed (as in step 6). With this updated setup, it is

possible to learn from newly arriving traffic and mitigate abnormal traffic continuously (as

shown in step 7). SmartEdge achieves continuous learning beyond existing frameworks by

actively collecting traffic features and updating the model, shown as steps 2-7, to detect and

mitigate emerging threats. Detailed components are illustrated as follows.

4.3.2 Implementation

The implementation of the solution is composed of three main components:

Figure 4.4: Components used in P4Pir workflow.

Attack defender performs ML-based attack detection and fast mitigation within the data plane.

This defense mechanism involves two function blocks: in-band feature extraction and in-

network tree-based attack mitigation. First, relevant traffic features are extracted as inputs to

an in-network model. Next, an in-network inference tree model, which is mapped to data plane,

identifies malicious traffic based on these features (Figure 4.4 step 1). As a result, benign traffic

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

32

is allowed to pass through, while detected malicious traffic is swiftly dropped, effectively

mitigating the potential threat.

Log labeler automates a proactive logging process from the data plane to the control plane. It

has two function blocks: proactive logging and unsupervised labeling. During proactive logging,

extracted features are promptly logged to the control plane (Figure 4.4 step 2). At the control

plane, these logs are labeled using the unsupervised algorithm. This approach allows for

continuous learning of incoming traffic patterns.

Model mapper serves the purpose of training and mapping the in-network model (Figure 4.4

step 3). Its main function is to generate and seamlessly update Match-Action table entries,

allowing for the runtime configuration of in-network inference. It involves two function blocks:

model train & map, and shadow rule updates. The “Model Train & Map” block serves two

purposes. Firstly, it retrains the model based on logs, allowing updates to adapt to new traffic

patterns. Secondly, new table rules are generated to map the retrained model's parameters.

Next, the “Shadow rule update” block inserts these new rules into the data plane using a shadow

update method (as shown in Figure 4.4 step 4). This seamless configuration of in-network ML

inference ensures uninterrupted traffic forwarding in the data plane.

With this framework design, our solution continuously learns from newly incoming traffic and

quickly mitigates abnormal traffic.

4.3.3 Preliminary Results

The first prototype was developed on P4Pi [Zan22, Lak21], using Raspberry Pi 4 Model B with

8GB of RAM, and running P4Pi release v0.0.3 using bmv2 with v1model architecture. We also

prototyped it on the Dell EMC Edge Gateway 5200 hardware device [Del23] used in UC-3, where

the functionality is encapsulated within Docker and executed on the Dell gateway device. The

code is implemented mainly in P4 and Python to provide data plane and control plane

functionality, correspondingly. ML Model training and mapping for in-network inference

function is based on scikit-learn [Ped11] and Planter [Zhe22].

For performance evaluation, it was connected to another Raspberry Pi and a desktop with an

Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz and 64 GB RAM as client and server. Public IoT datasets

CIC-IDS2017 [Sha18] and EDGE-IIOTSET [Fer22] are used for model training and evaluation. The

captured traces in the dataset are replayed using tcpreplay. In these datasets, attacks are

launched in different time slots using a week-worth of data. In order to examine the

effectiveness of continuous learning, we assume an initial state in which the gateway learns only

one attack on the first day. Then, another type of attack is replayed to simulate emerging attacks

on the next day. After deployment, we compare its accuracy with a baseline's accuracy obtained

using a static model. The static model is initialized by learning a single attack on the first day and

maintained unchanged for incoming traffic replayed from other days. There are several metrics

to evaluate detection performance. In SmartEdge, we use accuracy (ACC), F1 score, and true

positive rate/false negative rate (TPR/FNR) as the metrics defined as below to evaluate detection

performance.

Table 4.1 and Table 4.2 list accuracy and F1 score results of encode-based Decision Tree (DT)

and Random Forest (RF) [Zhe22-2] with and without P4Pir's model updates. Static DT/RF models

without P4Pir's updates are initialized as a baseline and trained with a single attack (“Base”

columns in Table 4.1 and Table 4.2). To keep the results comparable, 5-tuple features {source

IP, destination IP, source port, destination port, protocol} are used to train static DT/RF model

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

33

in both datasets. To select model parameters, we use grid search methods and use the

parameters that give high accuracy. That is, in CIC-IDS2017, DT model is trained with a maximum

depth of 5, and RF model is trained with 5 trees and maximum depth of 5. In EDGE-IIOTSET, DT

model is trained with a maximum depth of 6, and RF model is trained with 6 trees and maximum

depth of 6.

Table 4.1: Detection accuracy on dataset CICIDS 2017.

Table 4.2: Detection accuracy on dataset EDGE-IIOTSET.

The results show the DT/RF mapped to the data plane for in-network inference can achieve the

same level of accuracy as the benchmark performance given by both datasets, reaching more

than 90% accuracy and F1 score as listed in initial states. Different attack patterns may result in

different levels of accuracy decrement for static models (Baseline), and we can efficiently

mitigate it through model updates. Accuracy decrement can be seen for baselines in

“SCAN→DOS” column in Table 4.1 and “SYN→SCAN” column in Table 4.2. It may be due to the

changing attack attributes and feature distributions that static models have not learned. The

novel unsupervised labeling mechanism learns changing feature distributions in logs and

retrains DT/RF with the logs to detect attacks with increased accuracy. It increases DT's accuracy

by more than 50% and RF's accuracy by more than 30% (“SCAN→DOS” column in Table 4.1 and

“SYN→SCAN” column in Table 4.2).

To assess the effectiveness of the in-network design in fast attack mitigation, Figure 4.5 (a)

presents a snapshot of captured traffic. In this capture, Friday afternoon record with normal and

DDoS traffic in CIC-IDS2017 dataset is replayed. Total amount of traffic (including normal and

DDoS attacks) is marked in blue, and attack traffic is marked in red. DT is deployed based on five

features and the black dash line depicts the number of packets that are mitigated (dropped) by

the solution. As shown, it learns the new attack in sub-millisecond and quickly starts dropping

attack traffic, as shown by the overlap of red and black dash lines in Figure 4.5 (a).

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

34

Figure 4.5: (a) A snapshot of mitigation performance of SmatrEdge DT on DDoS attack from CIC-IDS2017 dataset. (b)

Shadow update impact of SmatrEdge DT on throughput. Baseline - forwarding setup without any model update.

For the update efficiency, a shadow update scheme is introduced. As the update involves

changes to table rules within the data plane, the efficiency of shadow updates is evaluated. A

qualitative comparison of throughput is presented in Figure 4.5 (b). At the 60-second mark

(indicated by the yellow arrow), the shadow rule update does not affect throughput, as indicated

by the similarity between the blue solid curve (shadow update) and the black dashed curve

(baseline without our deployment).

This work has been peer-reviewed and published in IEEE Internet of Things Journal [Zan23-1].

4.4 FEDERATED IN-NETWORK DEFENSE
To provide accurate analysis capability by ML-driven algorithms, a large amount of telemetry

data is sent to server/cloud for ML training and inference. Such transmissions increase the load

on the communications infrastructure and may lead to long RTT, increasing the response time

to mitigate attacks. Although in-network ML-based attack detection offers immediacy and

flexibility, scaling such solutions to multiple devices in a distributed system poses challenges,

particularly in the case of multiple gateway access at the IoT edge [Zhe23-3], as in SmartEdge.

To tackle this issue, Federated Learning (FL) algorithms can enable ML-based model training and

inference with the data maintained locally. Data volume and communication overheads are

reduced by keeping the input data locally, while sharing model parameters with the server to

maintain data privacy. To do so, SmartEdge needs to efficiently coordinate the tree-based FL

design with the in-network ML-based attack detection in distributed IoT scenario.

In SmartEdge, we present a distributed in-network attack detection solution (dubbed FLIP4)

based on federated tree-based models. It does model inference in-band to quickly detect and

mitigate attacks. It utilizes FL to coordinate an efficient distributed deployment of in-network

attack detection, reducing communication overheads and preserving data privacy. Instead of

sharing all collected data, the solution trains a global model by sharing local model weights

without leaking any source data.

To enable federated in-network defense, SmartEdge offers the following innovation: 1) enabling

lightweight learning and update process to adapt to distributed IoT setup. 2) Securing the model-

sharing process with low overhead to prevent malicious interception 3) integrating the local

information into a global model and driving local update for in-network inference process.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

35

4.4.1 Design

In SmartEdge, we consider a network scenario with multiple switches acting as IoT gateways

that are deployed between the IoT end devices and a remote server in the cloud. Each IoT end

device is assumed to be at risk of network attacks like Scanning, Man-in-the-Middle (MitM),

Distributed Denial of Service (DDoS), etc. An attacker might exploit one of the devices to launch

protocol attacks or use several of them as a botnet.

Figure 4.6: System design of Federated In-Network Defense.

The proposed design is a privacy preserving in-network analysis framework based on FL and in-

network ML. Under this framework, traffic is being processed inside the IoT gateway with low

latency and high throughput, traffic data remain locally, and uploaded models are added with

noise to prevent privacy leakage. The complete process consists of the following steps. A

gateway (a switch) is first initialized with a local model trained using a local traffic dataset (Figure

4.6 step ❶ and ❷). The trained model is offloaded and mapped to the data plane pipeline for

in-network inference by running a P4 code and inserting mapped table entries reflecting the

model structure and parameters (Figure 4.6 step ❸ and ❹). Incoming traffic from each user

device passes through the programmable data plane on IoT gateway for header parsing and

feature extraction. The extracted information goes through the M/A pipeline with inference logic

for labeling. If a packet is labeled as benign, it will be forwarded, otherwise, it would be dropped.

To maintain a global model for the server over the local models on multiple gateways, the

parameters of the trained model on each IoT gateway are sent to the server with the protection

of Differential Privacy (as Figure 4.6 step ❺). When the server receives the updated information

from all gateways, the aggregator starts to average the parameters to generate a global model,

and the parameters of this global model are sent back to each IoT gateway for local model

updates (as Figure 4.6 step ❻). The mapper on each gateway coordinates the control plane and

data plane to map the updated model’s parameters to table rules and insert the new rules to

the data plane pipeline at runtime (as Figure 4.6 step ❼ and ❽). The training process is further

split into model training and communication process. In this system workflow, the model training

includes local training on the IoT gateway, and global training on the server. Communication

refers to the interaction between the control plane and data plane within the IoT gateway, and

to the parameter exchange between the IoT gateway and the server.

4.4.2 Implementation

The implemented prototype combines interaction between the data plane, control plane, and

server to achieve FL-based in-network attack detection. It combines three types of components:

trainer, mapper, and aggregator.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

36

• Trainer: The role of the trainer is to train the local model on every single device. It runs

on the IoT gateway control plane and preprocesses local data. It next initializes the local

model and conducts the model training.

• Mapper: The completeness of model training will trigger the mapper to map the model

inference process to the data plane. It maps the trained model to P4 code and a set of

M/A table rules. These rules are inserted by the control plane into the data plane

pipeline for in-network inference. The data plane of each IoT gateway runs the

generated P4 code, and M/A rules are written to the data plane's tables for in-network

inference at runtime.

• Aggregator: When the trainer completes model training based on the local data, the

parameters of the local model are sent to the server, where the aggregator computes a

federate averaging over all local models to gain the global model. It then sends the

averaged parameters back to the IoT gateway for local updates.

Figure 4.6 illustrates a scenario where multiple users (end devices) access through the same

gateway in a multiple access gateway scenario. This includes a more dedicated scenario when a

gateway serves the data access from a single user.

4.4.3 Preliminary Results

Experimental Setup. The data plane code is implemented in P4 language using bmv2 with

v1model architecture and prototyping on Raspberry Pi using P4Pi-v.0.0. Python code provides

controller and server functionality. The prototype extends the design in FL algorithm [Mad22]

and Planter [Zan23-1, Zhe22] for ML training and inference functions. To evaluate performance

on multiple nodes, Mininet is used for network emulation. Baseline results are taken from offline

model learning using NN in PyTorch and XGB in sklearn.

Network Setup. As the solution is deployed for a distributed network scenario, a SOHO (Small

Office/Home Office) network scenario is taken as a sample scenario where a limited number of

gateways are connected. A network topology is built in Mininet to simulate a connection at the

network edge with multiple switches acting as gateways and these gateways are linked with an

edge switch connecting to the server. The parameters of the topology vary between the

experiments.

Dataset. Public dataset CICIDS 2017 [Sha18] is used as source data, which includes both benign

and malicious network traffic. In this work, we use Scanning, DDoS, and Botnet attacks as

emerging attacks from IoT end devices assuming that remote server/cloud has to learn these

attacks.

Evaluation Metrics. Detection Accuracy: Several metrics can be used to evaluate detection

performance. In this paper, we use Accuracy (ACC), True Positive Rate (TPR)/ False Positive Rate

(FPR), Area Under the ROC Curve (AUC) as the metrics to evaluate detection performance.

Table 4.3: Detection accuracy with/without DP on CICIDS 2017 dataset.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

37

Table 4.3 provides a summary of detection accuracy of the prototype using CICIDS 2017 dataset.

Taking the XGB model as an example, Table 4.3 presents the detection performance of the

model implemented in an in-network manner with/without DP (DP-XGB/XGB) enabled on

IID/non-IID dataset, where IID data is obtained by shuffling the dataset. To clearly list the

performance results of local models at gateways and the global model in server, a network

topology with 3 access gateways is setup on edge. Learning results on source data at the server

are also listed as offline results. The results show that: a) Based on local information and local

training, the global model is able to integrate the local models and present accurate attack

detection without directly gathering the local data at the server. Due to the privacy trade-off,

the global accuracy is slightly lower than offline results that are directly trained from source

data, but is higher than NN model's global accuracy. b) The solution provides higher detection

accuracy for IID data than for non-IID data. Considering that the global model is an average of

the model at each gateway (switch), the distribution of local data may affect the model

averaging performance. c) Introducing DP into the FL model can lead to a minor accuracy

degradation (e.g., 4% decrement in accuracy for non-IID data). Such degradation is caused by

the introduction of noise in DP method, which is a trade-off between accuracy and privacy.

This work has been peer-reviewed and published at IFIP Networking Sec4IoT [Zan23-2].

4.5 HIERARCHICAL FLOW-TO-TRAFFIC GRAPH NEURAL NETWORK FOR DDOS ATTACK

DETECTION
Distributed Denial of Service (DDoS) is one of the most common cyber-attack which takes

advantage of the capacity limits of a network resource, orchestrating multiple requests from

several devices that congest the access to the resource for ordinary usage. There are three main

types of DDoS attacks:

• Volumetric attacks: A botnet attack floods the network with a massive volume of

legitimate traffic that saturates the bandwidth.

• Protocol attacks: The resources of the servers or the intermediate communication

equipment, such as firewalls and load balancers, are consumed by targeting Layer 3 and

Layer 4 protocol communications.

• Application attacks: The application layer (Layer 7) is attacked by legitimate requests

that target vulnerabilities to consume specific resources, such as database queries or

file reads.

An example of a Volumetric Attack is the ICMP Floods that overwhelms a target device with

ICMP echo-requests, forcing it to respond with an equal number of echo-replies. An example of

a Protocol Attack is SYN Flood, which exploits the TCP handshake mechanism by opening several

connections with SYN packets destined for the server. It will send SYN/ACK packets until the

client responds with an ACK, that the attacker will never send, or a connection timeout, uselessly

consuming bandwidth. To build a flexible DDoS Detection System (DDS) able to face the variety

of attacks, it is necessary to observe both the aggregated traffic between servers and hosts and

the specific traffic matching the communication flow (e.g., protocol, ports) between two

endpoints. The DDS must reach a trade-off between the delay due to the amount of incoming

traffic under analysis (to provide a sufficient overview to observe possible malicious patterns)

and the reactivity to enforce proper mitigation and security rules promptly before significant

damages. Moreover, this control mechanism should not overload the computation capabilities

of the network.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

38

DDSs based on traditional Machine Learning (ML) and Deep Learning (DL) techniques exploit

meaningful either flow-level or traffic-level features that are statistical aggregations of the

information related to the exchanged packets in a flow or in a time window, respectively. Those

approaches show good performance when trained on popular Intrusion Detection System (IDS)

datasets but lack adoption in real-world scenarios due to their inability to generalize and be

flexible to different networks and traffic profiles. This problem can be addressed by replacing

the statistical aggregation with the investigation of the structure of flows, given by sequences

of exchanged packets between two endpoints, and aggregated traffics, intended as the set of

flows established among endpoints in a certain time window. This augmented topological

knowledge provides the possibility to detect common structural patterns that appear in specific

types of DDoS attacks. It is necessary to analyze both intra- and inter-entity flow level

interactions to completely capture all the possible attack patterns.

In SmartEdge, we propose a novel graph structure Flow-to-Traffic Graph (FTG) that incorporates

both flow-level and aggregated traffic-level structures in a two-level hierarchical representation,

and a GNN model (FTG-Net) able to process those fine-to-coarse graphs and classify the flows

as legitimate or malicious. Our approach can represent and embed the structure of a flow

between a host and a server, and combine this representation with the structure of the whole

traffic, fulfilling the requirement of including each type of DDoS attack in the possibly recognized

patterns. This solution is only based on the traffic topology and does not require stateful

features, that can be expensive to compute in real-time scenarios and often overfit the

characteristics of a specific training dataset, without the ability to generalize. When FTG-Net is

deployed in real-world environments, significant stateful features, depending on the network

requirements and capabilities, can be added to the graph nodes to enrich the representation

and improve the performance.

4.5.1 Graph Structure for DDoS Attack Detection

GNNs are a type of deep learning model specifically designed to process and analyze data

represented as graphs. GNNs are a natural extension of traditional neural networks, but they

are designed to handle inherently non-Euclidean data such as social networks, communication

networks, and biological networks. Unlike traditional neural networks, which can only operate

on data that can be represented as vectors or matrices, GNNs can directly process the graph

structure itself. This allows them to capture the graph's intricate connections and relationships

between entities (nodes).

Network traffic can be represented hierarchically, with flow entities ranging from fine-level

packets to coarse-level communications between endpoints. This section introduces a

hierarchical graph-based structure called FTG (Flow-Traffic Graph) for detecting DDoS attacks.

The FTG captures information at flow and traffic levels, making it a comprehensive tool for

detecting such attacks.

4.5.1.1 Flow Graph

The Flow Graph is a crucial component in analyzing network traffic patterns. It is created for

each time slot and captures how packets interact between endpoints within that time slot. To

construct the Flow Graph, each packet is converted into a node, and the upstream and

downstream packets are distinguished by positive and negative packet lengths, respectively.

Edges are added between consecutive packets within the same mini-group, which are packets

sent sequentially by one of the endpoints. This approach allows us to gain insights into packet

behavior and identify potential network performance issues.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

39

Figure 4.7: Example of a Flow Graph. Upstream packets have positive packet length features, whereas downstream

packets have negative packet length features. The mini-groups sequence is sorted from left to right.

4.5.1.2 Traffic graph

A Traffic Graph is generated for each time slot to analyze the interactions between network

endpoints. The nodes in this graph represent pairs of endpoints that have communicated with

each other during that time slot. The features of each node are based on the output vector of

the Flow GNN, which processes the corresponding Flow Graph. Edges are added between nodes

in the Traffic Graph when they share the source or destination IP address to connect nodes in

the Traffic Graph.

4.5.2 FTG-Net Hierarchical Model Architecture

The FTG-Net architecture is designed to handle the multi-level graph representation of FTG. It

comprises three steps. In the first step, traffic data is converted into FTG structures. In the

second step, the Flow GNN processes the Flow-level Graphs and generates an embedded

representation vector for each graph. These vectors are employed as node features in the

Traffic-level Graphs, which are processed in the third step by the Traffic GNN. Finally, the Traffic

GNN outputs the final predictions for each flow, which represents the communication between

two endpoints in a time slot. The architecture of FTG-Net, shown in Figure 4.8.

Figure 4.8: Hierarchical model architecture of the FTG-Net solution

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

40

The FTG-Net model comprises two GNNs: a Flow GNN and a Traffic GNN. The Flow GNN analyzes

the Flow Graphs to extract features at the flow-level, while the Traffic GNN analyzes the Traffic

Graph to extract features at the traffic-level. The Traffic GNN's output is then used to determine

whether the traffic in the corresponding time slot is malicious or not.

The FTG-Net model is a powerful tool for detecting DDoS attacks. It captures both flow-level and

traffic-level information, which means it can identify targeted attacks on specific endpoints and

attacks that affect the overall network traffic. Additionally, the model incorporates flow-level

patterns, allowing it to learn and recognize patterns indicative of DDoS attacks. Another benefit

of the FTG-Net model is its efficiency in both training and deployment. Its relatively simple

structure makes it suitable for real-world applications. When evaluated on a dataset of real-

world DDoS traffic, the FTG-Net model demonstrated impressive results. It achieved a

remarkable detection accuracy of 92.1%, surpassing state-of-the-art DDoS attack detection

methods. The FTG structure provides a promising approach for DDoS attack detection. The

hierarchical graph-based representation captures flow-level and traffic-level information, and

the two-level GNN architecture allows the model to learn flow-level and traffic-level patterns.

The experimental results demonstrate the effectiveness of the FTG-Net model for DDoS attack

detection.

4.5.3 Results

To evaluate how well FTG-Net performs, we used a method called 5-fold cross-validation. This

method randomly divides the dataset into five parts, or "chunks." We trained the model for each

chunk using the other four chunks as the training set and the current chunk as the test set. We

used a time slot size of 5 seconds and an 8-dimensional vector as the output of the Flow GNN.

We used an 8-dimensional vector as the feature vector for the Traffic Graph nodes. We also used

64 hidden channels in the output to the GNN Layers. Initially, the nodes of the Flow Graphs are

made up of only one element, corresponding to the packet length.

Method Accuracy F1-score

LUCID 0.9967 0.9966

GLD-Net 0.9940 0.9920

GraphDDoS 0.9959 0.9959

FTG-Net 0.9914 0.9913
Table 4.4: Comparison of Results

The results achieved by combining the best model for each cross-validation phase are shown in

Table 4.4. These results are comparable with the state-of-the-art results. Our model has an

advantage over other models in that it only considers the network structure and does not collect

multiple stateful features. However, the time slot size must be configured carefully to use our

approach. A larger time slot provides a broader view of the traffic topology, which contains more

information to detect potential DDoS attacks. But it is inversely proportional to the system's

responsiveness and may not be enough to detect attacks before damage.

Additionally, with large Traffic Graphs, the inference time increases. On the other hand, a

smaller time slot may need to carry more information to classify traffic robustly. To evaluate the

performance of our approach, we measured the average inference time and weighted F1-Score

of four different time slot sizes. We used a random split that included 70% of the data in the

training set and the remaining 30% in the test set. The results are shown in Figure 4.9, confirming

the importance of carefully selecting the time slot size.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

41

Figure 4.9: Hierarchical model architecture of the FTG-Net solution

This work has been peer-reviewed and published at HPSR Conference [Bar23].

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

42

5 HARDWARE-ACCELERATED IN-NETWORK OPERATIONS

5.1 DISTRIBUTED IN-NETWORK OPERATIONS

5.1.1 Introduction and motivation

Scaling in-network services is hard, as programmable network devices are intended for high-

efficiency packet processing, with limited resources (e.g., memory, operations, and stages)

compared with CPUs. One approach is to optimize algorithms' design for a single-device

deployment, yet resource constraints remain a limitation [Zhe22]. An alternative solution is

moving to distributed in-network computing, jointly utilizing resources of programmable

network devices. Such an implementation is especially important in SmartEdge, where a swarm

of devices is being used, and complex intelligent operations need to be supported across the

swarm.

Distributed in-network computing raises multiple implementation challenges, especially where

resource-heavy applications are considered, such as large machine learning (ML) models. Figure

5.1 illustrates the challenges: (1) Decomposing the single program into multiple segments. (2)

Distributing the program's segments across multiple devices without affecting the correctness

of its functionality. (3) Satisfying the program's and network's set of constraints, such as latency

and resource constraints. (4) Providing the program's functionality for any set of paths within

the network without routing rules changes. This last challenge is possibly the hardest, as in a

network packet may travel from any node to any node, and operators may use different routing

optimization methods.

Figure 5.1: Distributed in-network computing paradigm.

In a software-defined network, a controller has a centralized view of the network, including

device information, and potential routes through the network [Zhe23-1]. Building upon this

information, a controller can be designed to provide a joint resource provisioning plan for

distributed in-network computing. It can utilize unused network resources, splitting a single in-

network computing service across several devices.

In SmartEdge, we present a Distributed In-Network Computing (DINC) solution. It efficiently

plans and implements P4-based service partitions on multiple network devices. The solution’s

planner supports any-to-any routing and is able to distribute and deploy program segments

across network devices while providing full, correct functionality. To ensure co-existence with

normal network functionality, it co-designs a code slicer and generator, extracting and

generating P4 program slices in accordance with the planner's strategy.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

43

5.1.2 Distributed In-Network Computing Workflow

An overview of the distribution framework is shown in Figure 5.2. The framework is given an in-
network computing program with both data plane and control plane code components (shown
in ❶), and a network topology (shown in ❷). The P4 slicer extracts the program resource
requirements (shown in ❻), dependencies (shown in ❸), and metadata information. The
network controller provides the routing table, with all paths identified either by the controller
or the framework (shown in ❹) and the resources available on each network device (shown in
❺). The planner uses the outputs from steps ❸ to ❻ to craft an integer linear programming
(ILP) problem and outputs a deployment strategy in step ❼. This guides the P4 generator for
data plane and control plane codes generation in step ❽.

Figure 5.2: DINC workflow overview.

5.1.3 Framework Implementation

The deployment of distributed in-network computing is challenging for two reasons. The first is

the complexity of the data plane program. It is hard to correctly extract information from a given

data plane program according to user expectations. The second is the complexity of data plane

program generation. Reconstruction of a valid data plane program under a certain architecture,

coexisting with its use case, and with an embedded DINC header is difficult, especially when the

slice is complex.

Our framework is designed to tackle these two challenges. It contains a data plane program

Slicer, a strategy Planner, a code Generator, and a Tester, allowing the generation of sliced data

plane programs and their deployment on target hardware nodes. The detailed workflow of the

framework shown in Figure 5.3 is as follows: ❶ User input: The target data plane program and

slicer markers are required as user inputs. ❷ Network configuration: The network topology and

its related resources are required and stored in configuration files, which can generate directly

from the network controller or emulate by using the framework. ❸ Slicer: The network slicer

slices the target program based on the markers, builds the dependency between each segment,

and digs the resource information of each segment. ❹ Planner: The planner is used to generate

deployment strategies for the target program. Based on the input network topology, segment

dependency, remaining resources for each network device, and the resource overhead of each

segment from previous steps, the planner applies the ILP to formulate the plan. ❺ P4 generator:

The code generator generates data plane codes for all programmable network devices. To

generate the codes, the generator jointly combines the selected architecture and use case based

on the configurations, and combines the program segments of the input program from the

deployment strategy. ❻ Synthetic test: Before loading the generated code to the real hardware,

a synthetic test is implemented by the framework. The framework will activate a test

environment with the same topology as the input network and load the generated model for

each node. The test can then be easily done within the environment while the content varies by

use cases. P4 debugging tools can be used in the field to trace and correct bugs in each generated

segment [Sto18, Zho19]. ❼ Segment loader: When the test is finished, the generated data plane

programs with sliced segments are to be sent to the controller for deployment.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

44

Figure 5.3: Distributed In-Network Computing framework components and workflow steps.

Splitter (Slicer). The slicer is used to segment the input data plane program and extract

information from it. It uses manually added markers to slice the program and extract the

information. This solution is lightweight and flexible.

Planner. In SmartEdge we address the absence of distributed planning for in-network computing

across multiple paths, without influencing the routing rules of the original network. To tackle

this, the problem is formulated within the planner as an ILP problem. In this problem, we expect

our deployment strategy to optimize the following three major objectives in distributed in-

network computing: minimize the resource consumption, minimize the computation delay and

minimize duplicate deployed segments, as well as constraints of dependency, integrity, and

resource availability. These objectives can be extended, encompassing additional and

customized requirements, such as limitations on hops and latency for specific services,

constraints on throughput, and variations in resource constraints using heterogeneous devices.

The specific constraint conditions applied can be adjusted based on the specific deployment

scenario. Searching for the optimum solution of an ILP is NP-hard. SmartEdge tackles this

problem using the branch-and-cut method that combines the cutting plane method and the

brand-and-bound method.

P4 Code Generator. The P4 generator is designed to generate the data plane program that can

be directly applied to each node, composed based on a controller plus multiple architectures

and uses case building blocks. Before generating any node, the controller will invoke the selected

architecture and use case block based on the network controller or the configurations. Besides

writing the skeleton of the data plane program, the selected architecture folder will call the

respective use case function for writing use case codes at each position of the program. The

deployment strategy will also be applied in the architecture block to drive the regeneration of

the sliced segment at the right position. Functions that can auto-generate P4 codes dealing with

metadata embedding and extraction as well as bitmap checks are applied and can be called by

any nodes or segments during the generation process.

Modular Framework Design. The new architecture and target design appear frequently, and a

design that allows iteration is required. The framework applies a modular design, where a

centralized controller is used to provoke corresponding modules according to the input

configurations. When a module is selected, all the functions under this module will be loaded to

the controller. It is currently designed to support modular topology generators, solvers,

architectures, targets, slicers, use case generators, and testers. With this modular framework

design, the solution can be adapted to the required case easier and with strong customized

capacity.

Implementation. The framework is implemented in Python 3.10. The ILP solver is based on milp,

a mixed-integer linear programming solver in SciPy v1.10.0. The topology is stored using

NetworkX 3.0. The framework is open and available on the DINC’s GitHub repository [Zhe23-4].

It supports a range of predefined modules, including topologies, solver, slicer, architectures,

targets, and tester. Under topologies, it currently supports Fat-Tree, Folded-Clos, and BT ISP.

https://github.com/In-Network-Machine-Learning/DINC

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

45

The P4 slicers currently support manual configuration inputs, where inputs come from manual

marking or are auto-generated by a data plane automation framework like Planter. It supports

two architectures: v1model [Bar21] and TNA [Int21] and coexists with simple forwarding, RARE

[Lou22], and Intel's switch.p4.

5.1.4 Preliminary Results

We evaluate the solution using two common network scenarios — a Folded-Clos based data

center network topology (shown in Figure 5.4 (a) with 3 core, 6 aggregation level, and 24 edge

switches, connecting around ten thousand servers), and a large wide area network topology -

British Telecom (BT) (shown in Figure 5.4 (b) with more than a thousand nodes: 8 inner core, 12

outer core, 63 metro, and 925 tier 1 switches). The data center topology is relevant to the small-

scale deployments in SmartEdge, while the wide-area network is more representative of UC-2

while also evaluating scalability. Using the two topologies, Table 5.1 shows a subset of potential

ingress/egress switch setups. A total of five setups are presented and are combinations of two

dimensions: communication direction and deployment view.

Figure 5.4: Network topologies used for evaluation.

Table 5.1: Network ingress & egress scenarios using the topologies shown in Figure 5.4.

Workloads. We use several popular in-network computing programs from different domains: in-

network telemetry (INT) using PINT [Bas20] (especially useful to accelerate SmartEdge’s

innovative telemetry solution), load balancing using Pegasus [Li20] (relevant for load-balancing

accesses to coordinators), and in-network ML inference based on Planter [Zhe22] with 5 ML

models (applied to ML-based in-network defense). These applications represent advanced in-

network computing services, yet they require significant resources and need optimization when

co-deployed with other data plane forwarding functions.

Metrics: The efficiency of distributed in-network computing is evaluated for the following: 1.

Number of used nodes: The number of nodes required to deploy an in-network computing

program. This number depends on the total number of available nodes. 2. Hops per path: The

number of hops required to complete a given in-network computing program. Hop number is

directly proportional to the latency, and hops are used to represent latency, and to ensure the

evaluation is unbiased in terms of network setups and equipment selection. Cumulative

distribution function (CDF) of hops provides further insights into the distribution of required

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

46

hops per path. 3. Duplication of segments: in topologies with multiple in-out paths, duplicate

segments may exist on different paths. The amount of duplication is relative to the total number

of nodes and shows the efficiency of the deployment strategy. 4. Execution time: Job completion

time of the ILP solver is critical to its application. The ILP solver's execution time depends on

multiple factors, ranging from the topology to the program, and the solver will be generally

scalable if the time increases in a linear manner.

Environment: Both large-scale simulation and small-scale hardware tests are conducted. The

simulation is based on Mininet and BMv2, and hardware tests run on Tofino using APS-Networks

BF6064X-T (64x100G) and two NetBerg Aurora 710 (32x100G) switches. Tofino compiler is

further used for feasibility testing.

Program
Stand Alone

Segment Setup
Folded-Clos Topology BT ISP Topology

Stage Alone Coexist Path Dis. Nodes Hops Dup. Path Dis. Nodes Hops Dup.

INT-PINT 7 ✓ ✗ 5 4 18 ✓ 10/33 3/3 9 36 ✓ 3/1008 1.42/3.92 8

LB-Pegasus 8 ✓ ✗ 4 1 432 ✓ 30/33 2/3 56 26512 ✓ 400/1008 3.11/3.81 796

ML-NB 8 ✓ ✗ 2 4 18 ✓ 9/33 2/3 7 36 ✓ 6/1008 2.92/3.92 4

ML-SVM 9 ✓ ✗ 3 5 6 ✓ 8/33 3/3 5 12 ✓ 7/1008 3/5 4

ML-DT 2 ✓ ✓ 2 3 18 ✓ 1/33 1/3 0 36 ✓ 1/1008 1/3.92 0

ML-XGB 6 ✓ ✗ 4 2 432 ✓ 9/33 2/3 11 26512 ✓ 410/1008 2.76/3.81 422

ML-RF 6 ✓ ✗ 3 1 432 ✓ 30/33 2/3 33 26512 ✓ 400/1008 3.11/3.81 405

Table 5.2: Sample programs Supported by the framework. Segmentation (Seg.) Details can be found in [Zhe23-4].

Setups refers to Table 5.1. Duplication (Dup.) - number of duplicated segments. ✓/✗ Deployment feasibility.

Distribution (Dis.) - distribution feasibility. Nodes - nodes used/total. Hops - average used hops/path length.

Simulation: Our solution is evaluated both on the Folded-Clos data center network and BT

topology, using the five setups and seven workloads. We measure the resource consumption

and number of hops on both single and distributed deployments for all workloads, as

summarized in Table 5.2.

The distributed in-network computing framework is capable of processing distributed

deployment problems at data center level with about 10,000 servers or at ISP level with around

1000 switches. As Table 5.2 shows, all workloads, including those that cannot coexist with RARE

switch functionality (✗ in Coexist column) are feasible in a distributed deployment, coexisting

with network functionalities (Dis. column). As some programs, e.g., ML-DT, coexist with other

switch functions, the solution selects the best node along the path to optimally utilize resources

and minimize latency. Such resource optimization advantages can be found in all distributed

deployed programs.

In the comparison between standalone and distributed deployment, as illustrated in Table 5.2

(in the same row), consider the example of ML-RF/XGB. Under Setup 2, with a Folded-Clos data

center configuration featuring 3 core, 6 aggregation, and 24 edge switches (equivalent to 1000

servers), the solver successfully resolves 4 segments. In this setup, more than 400 distinct data

paths require service deployment. Our novel implemented algorithm deploys segments on only

9 out of 33 devices, achieving service completion with an average of 2 (out of 3) hops.

Additionally, there are only 9 secondary segments duplicated, compared to deploying on each

individual data path (which would require thousands of repeated segments) or alternatively

routing all flows requiring service through a single path or a subset of paths. This significantly

enhances deployment efficiency and reduces resource consumption.

In the comparison between distributed deployment under different path setups (among rows in

Table 5.3), workloads in BT topology using all-to-all scenarios (setups 1 & 2) require using less

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

47

than 40% of the nodes, and each path requires on average less than one duplicated segment.

For one-to-one and one-to-all scenarios (setups 3-5), not all the devices are needed for complete

task execution. In the data center setting, the number of all-to-all deployments requires one-

third of nodes when data is arriving from the core (e.g., incoming to the data center). Tasks for

outward flows may require all nodes if a latency optimization is applied (comparing ML-RF and

ML-XGB). This shows that our solver can reach optimal planning with efficient node utilization

and limited duplication under different topologies and traffic path conditions for both use cases.

Hardware test: We evaluate our prototype on a small-scale hardware setup using the distributed

RF-ML program on Point-to-Point and Fat-Tree topologies constructed using three Tofino

switches, covering the majority of scenarios in Table 5.2c& Table 5.3. RF-ML is chosen as Planter

[Zhe22] provides a functionality validation test. The result shows the model functions correctly

with the same accuracy as a standalone deployment.

Figure 5.5: Throughput and Latency on Hardware.

For the sample distributed RF segments, As shown in Figure 5.5, all segments are able to coexist

with the RARE router program and are able to achieve a full line rate of 6.4Tbps bit rate. For the

latency of each segment, the coexistence of the in-network computing application segment will

increase the 10% of the relative clock cycle. However, even coexists with RARE, all deployed

segments have a relatively low latency, which is lower than 60% of the reference design

(switch.p4). The full line rate in the result proved that the added data-sharing bitmap and

metadata passing mechanism will not limit the throughput of the system. The relative latency

shows that the coexistence of network functions by using the solution will not noticeably

increase the consumption of the clock cycle.

This work was peer reviewed and published in the Proceedings of the ACM on Networking

[Zhe23-3].

5.2 HARDWARE-ACCELERATED DDOS DETECTION USING CONVOLUTIONAL NEURAL

NETWORKS (CNNS) ON DPU

5.2.1 Introduction and motivation

SmartEdge supports advanced intelligent network security solutions, and under T4.3 our goal is

to accelerate these solutions. Traditional software-based IDSs and IPSs face challenges in

processing and analyzing network traffic in real-time due to the increase in network speeds and

volumes. They also have scalability issues, high false positive rates, and limited effectiveness in

detecting modern network security threats. To address these challenges, data plane

programmability with P4-based feature extraction and in-network machine learning pipelines

have been introduced to partially overcome scalability concerns at the switch level.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

48

In SmartEdge, we propose an innovative hardware-accelerated framework designed to promptly

detect and mitigate DDoS attacks by enabling real-time traffic analysis. The framework is built

around a data processing unit (DPU) and uses the high-speed packet processing capabilities of

the Data Plane Development Kit (DPDK) libraries. We have integrated RegEx for deep packet

inspection (DPI) to analyze packet-level content. The framework also includes deep learning

methodologies for real-time intrusion detection and Suricata for further fortification against

potential attacks.

Our objective is to provide a comprehensive and adaptable solution that not only deals with the

current limitations of traditional IDSs and IPSs but also aligns with the unpredictable nature of

contemporary cyber threats. The goal is to improve the resilience of networks against various

types of attacks, reinforcing the fundamental framework of cybersecurity in a constantly

evolving technological era.

5.2.2 Background

Traditional intrusion detection systems rely on signature-based techniques to identify known

attack patterns, but these systems often cannot detect new or sophisticated attacks. Deep

learning has emerged as a promising approach to network intrusion detection, as it can learn to

identify attack patterns based on large amounts of network traffic data. However, training and

deploying deep learning models for network intrusion detection can be computationally

intensive and require significant hardware resources.

Convolutional Neural Networks (CNNs) are a type of deep learning technique that has been

increasingly used in the field of artificial intelligence, leading to remarkable advancements.

Although the use of CNNs in cybersecurity is still a matter of ongoing research, they have already

demonstrated notable success in certain applications such as malware detection, network traffic

analysis, and intrusion detection in industrial control systems. These achievements, coupled

with the advantages of CNNs in terms of reducing the need for feature engineering and providing

high detection accuracy, motivate us to incorporate CNNs in our work.

Although larger CNN architectures have shown impressive detection rates, their size can be

problematic when operating in limited resource environments. Moreover, IoT devices'

deployment has increased the likelihood of DDoS attacks via vulnerable IoT devices. As a result,

it is imperative to place defense mechanisms appropriately. For instance, high-powered

appliances can absorb volumetric DDoS attacks and are located either locally or in the cloud.

With the emergence of edge computing to enhance service delivery, it has become necessary to

protect against attacks closer to the edge and on resource-constrained devices. Even without

resource constraints, it is critical to minimize resource usage for optimal system output.

The BlueField-2 smart network interface card (SmartNIC) from NVIDIA provides a hardware

acceleration platform for network traffic processing, using DPDK libraries to offload network

traffic processing to the NIC. This can significantly improve performance and reduce the

computational burden on the edge CPU.

5.2.3 Proposed Methodology Hardware-Accelerated Framework

Our proposed framework utilizes the NVIDIA BlueField-2 DPU to detect malicious DDoS attacks

in real-time. The BlueField-2 is a SmartNIC developed by NVIDIA, which offers a hardware

acceleration platform for processing network traffic. By offloading network traffic processing to

the network interface card using DPDK libraries, the computational burden on the edge CPU can

be significantly reduced, improving performance.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

49

In SmartEdge, we introduce a hybrid framework for live traffic analysis and intrusion detection

on the DPU. Our framework uses hardware acceleration to perform deep packet inspection (DPI)

and deep learning-based intrusion detection while enabling fast and efficient blocking of

malicious traffic. Figure 5.6 illustrates how DDoS detection tasks are offloaded to the DPU.

Initially, incoming traffic is received by the DPU, which performs RegEx operations to identify

malicious traffic. If the traffic is benign, it is forwarded to the edge CPU for further processing.

However, if the traffic is malicious, the DPU immediately drops it.

Figure 5.6: (a) Without offload: DDoS attack detection and mitigation inside edge and (b) With offload: DDoS attack

detection and mitigation inside DPU

Our system employs two advanced DDoS detection algorithms based on deep learning, namely

a fine-tuned CNN and a GRU. These algorithms begin by extracting packet attributes, followed

by grouping them into flow. After this, the flows are truncated or padded to a fixed length and

normalized. The fine-tuned CNN algorithm predicts whether each flow is normal or an attack.

On the other hand, the GRU algorithm extracts features using the fine-tuned CNN and then feeds

them to the GRU model for classification. Our system can detect DDoS attacks in real-time with

high accuracy.

5.2.4 Implementation

Our proposed framework for detecting and blocking DDoS attacks was tested on a real-world

network dataset collected from our testbed. The dataset included normal traffic as well as a

variety of DDoS attacks such as volumetric, application-layer, and protocol-based attacks. Our

experiment results showed that our framework is effective in accurately detecting and blocking

a wide range of network attacks while maintaining high throughput and low CPU utilization.

Our DDoS detection and mitigation testbed consisted of two Dell servers connected via a SONiC-

based white box network switch. Our testbed is described in Figure 5.7. Each server was

equipped with an NVIDIA BlueField-2 DPU, with one server running the DDoS detection system

and the other running the DDoS mitigation system. The detection system used a CNN model to

classify traffic as normal or anomalous, while the mitigation system used an IPS to block

malicious traffic. The DPUs were utilized to offload traffic processing and REGEX operations,

which improved performance. The testbed was connected to a local data center using VLAN 2,

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

50

and the DPU admin server was also connected to the testbed using VLAN 2. We simulated a

DDoS attack on the testbed to evaluate the performance of our proposed framework.

Figure 5.7: Hardware-accelerated DDoS detection and mitigation using DPU Testbed

5.2.5 Results

This section presents a thorough analysis of the performance of our proposed security system's

detection and mitigation modules. We used a combined approach of GRU and CNN and a

directed mitigation technique to accomplish this objective. To evaluate the effectiveness of our

proposed method, we conducted tests on two existing detection methods: DIDDOS's GRU and

LUCID's CNN. These methods were selected based on their compatibility with similar application

environments and previous research.

The effectiveness of the anomaly detection approaches was evaluated using traditional

classification metrics such as accuracy, precision, recall, and F1 score. Accuracy measures the

percentage of correctly identified flow records, while precision estimates the percentage of

accurately identified abnormal IP flows among all samples identified as unusual. Recall evaluates

the proportion of correctly identified anomalous flows, and the F1 score represents the

harmonic mean between true-positive rate and precision.

Our performance analysis focuses on two different test scenarios that use the public

CICDDOS2019 dataset and a custom dataset. In the first experiment, we simulated IP flows from

the CICDDOS2019 dataset comprising 87 IP flow features. We selected 78 features by excluding

specific dimensions to avoid data bias. The dataset includes 12 types of DDoS attacks for training

and six for testing.

The results of evaluating GRU and CNN deep learning models for detecting DDoS attacks are

presented in Figure 5.8. The accuracy, recall, and F1-score were used as evaluation metrics. The

GRU model achieved an accuracy of 99.45%, recall of 99.43%, F1-score of 99.66%, false positive

rate (FPR) of 99.57%, and false negative rate (FNR) of 0.46%. The CNN model achieved an

accuracy of 99.41%, recall of 99.55%, F1-score of 99.64%, FPR of 98.78%, and FNR of 0.44%.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

51

Figure 5.8: Evaluation results of the CNN and the GRU models

We conducted tests on various methods for detecting flooding attacks, and the results were

highly promising, with a success rate of almost 99.45%. While the Convolutional Neural Network

(CNN) method did not outperform the Gated Recurrent Unit (GRU) method, it is a better choice

visually. The GRU method fared slightly better among the methods we tested, achieving a

balanced outcome across all four metrics we measured. Furthermore, we conducted a separate

analysis to evaluate the effectiveness of the methods in classifying normal and attack flows,

which provided us with insightful results.

In Figure 5.9 (a), we can observe that CNN successfully accurately classified 234933 instances of

normal traffic as normal, with a True Negatives rate of 99.43%. Similarly, 239530 cases of

malicious traffic were correctly identified as malicious, with a True Positives rate of 99.56%.

However, there were some instances where CNN made incorrect classifications. It misclassified

3622 instances of normal traffic as malicious, giving a False Positives rate of 0.57%. Moreover, it

misclassified 33 instances of malicious traffic as normal, resulting in a False Negatives rate of

0.44%.

The confusion matrix in Figure 5.9 (b) reveals that the GRU Model accurately identified 235640

normal traffic instances as normal (99.57% True Negatives) and 239534 malicious traffic

instances as malicious (99.56% True Positives). However, the model incorrectly classified 2915

instances of normal traffic as malicious (0.43% False Positives) and 29 instances of malicious

traffic as normal (0.44% False Negatives). This detailed information about the performance of

our CNN and GRU models is valuable for further analysis and improvement.

Figure 5.9: (a) Confusion matrix of CNN Model (b) Confusion matrix the GRU Model

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

52

5.3 INTELLIGENT ROAD SIDE UNIT

5.3.1 Background

As a pivotal component within the framework of intelligent transportation systems (ITS) such as

in UC-2, the roadside unit (RSU) is a multi-functional device strategically positioned alongside

roadways. RSU facilitates vehicle-to-everything (V2X) communication, enabling vehicles,

infrastructures, and the cloud to exchange crucial information with each other. Nevertheless, its

primary function is not limited to being a wireless communication device that provides

connectivity support to passing vehicles; rather, it can also serve as an intelligent computation,

memory, and networking hub.

Such intelligent RSU offers more task-offloading options for complex ITS scenarios. Compared to

computing on the vehicle side, intelligent RSUs naturally facilitate vehicle-to-vehicle and vehicle-

to-infrastructure cooperations, cutting down the redundant sensors and repetitive computation

across different vehicles; compared to computing on the traditional edge cloud servers,

intelligent RSUs decrease latency and network traffic, shortening the data flow pathway.

One of the foremost advantages of utilizing the RSUs for computational tasks is the reduction of

round-trip latency, as these tasks no longer need to access the cloud. In time-critical scenarios

such as collision avoidance and intersection management, round-trip latency should be

minimized to at most a few tens of milliseconds and even smaller for the computation time at

RSU. The demand for low-latency computation at the RSU underscores the need for acceleration

to fully achieve the potential of intelligent RSUs.

5.3.2 SmartEdge Intelligent RSU

Within the context of SmartEdge Use Case 2, this scenario is centered on the smart junction

scenario, encompassing multiple intersections. In this scenario, stationary radars, cameras, and

controllable traffic lights are deployed on the roadside, all connected to the RSU. Three

categories of vehicles are involved: ordinary vehicles, dummy vehicles, and smart vehicles.

Dummy vehicles can send information to the RSU, but do not respond to RSU’s messages. Smart

vehicles are equipped with cameras, LiDARs, GPS, and wireless communication, enabling

bidirectional data exchange with the RSU. This dynamic setting forms the background for our

development of an intelligent RSU.

SmartEdge will accelerate sensor fusion and collaborative perception at the RSU to enable the

provision of time-critical services for ITS. It will initially focus on accelerating the integration of

multi-modal and multi-agent data at the RSU. This integration involves combining raw or

processed radar data from the roadside, raw or processed LiDAR data from smart vehicles, and

GPS information from smart and dummy vehicles to create a comprehensive data repository.

Smart vehicles can query this dynamic repository to enhance their situational awareness and the

RSU itself can utilize it as well. The integration of camera data is considered a stretched goal for

future consideration, and the primary focus lies in accelerating this data fusion process.

SmartEdge will leverage sensor fusion and collaborative perception results to develop time-

critical and resource-intensive services such as collision avoidance. This will be achieved, for

example, by controlling traffic lights and other infrastructures, as well as communicating with

swarm’s nodes. The aim is to harness the capabilities of intelligent RSUs to improve

transportation safety and efficiency.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

53

5.3.3 LiDAR Processing Acceleration

The use of LiDAR in the intersection RSUs creates a unique opportunity. These devices naturally

combine visual and positional information that would otherwise need to be captured via a fusion

of camera and radar sensors. As an added benefit, the data generated by LiDARs, called "point

cloud", provides features enough to distinguish between different vehicle types while not

allowing privacy-sensitive features---faces or license plates---to be distinguished.

The point cloud, however, needs to be processed to make vehicle recognition possible.

Moreover, this processing must occur within the RSU to avoid lengthy transmission times to

prevent taking prompt actions, as Use Case 2 requires. In this task, we intend to provide

infrastructure to process the point cloud data in an edge device. We are designing a system to

efficiently extract features from the LiDAR stream (e.g., bounding boxes of moving objects along

with their velocity and reflexivity). The features can feed an object recognition machine learning

model that determines the vehicle type of each moving object [Lin18]. Our emphasis is to deliver

a language to express how to compute statistical, geometrical, and temporal features out of

point cloud data and its corresponding runtime. Focusing on a language rather than pre-selected

and hard-coded features allows the flexibility to cover many traffic model scenarios beyond Use

Case 2 in the future.

In practice, the expressions over this language (i.e., the features specifications) are executed by

a runtime we will also provide. This runtime must be adapted to the computational restrictions

of the RSU. Unfortunately, The CPU capacity is that unit is not adequate to deliver the results on

time, given the amount of processing necessary to extract useful information from the network

stream produced by the LiDAR. Therefore, instead of generating a software binary from the

features specifications, we will provide a runtime implemented on an FPGA within the RSU unit

that is capable of evaluating the latter. Because the number of features to extract is low, the

FPGA area necessary for this runtime should be adequate for the power and physical dimensions

of the RSU unit. We are currently experimenting with a low-power Xilinx FPGA unit that is

compatible with the restrictions.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

54

6 CONCLUSIONS

This document introduces the initial architecture for the Dynamic and Secure Swarm Networking

Work Package (WP4). The document combines both planned parts of the architecture, as well

as components that were also prototyped.

As shown, the three components of the Work Package: automatic discovery and

dynamic network swarm formation in near real time, embedded network security and isolation

and hardware-accelerated in-network operations for context-aware networking are

intertwined. Each task provides innovative components towards the project’s overall goals,

while also contributing novel solutions to the wider community.

The preliminary evaluation of the prototypes shows progress made toward the project’s KPI,

and in particular:

• Ultra-low latency, including <1µS on a switch, <1ms in container, and ~2ms on a

Raspberry Pi running an ML-driven in-network defense solution.

These are significant steps toward KPI K3.2.

• Varying between datasets, ML-driven in-network defense solution achieves accuracy of

>99% and F1>94% for known attacks and 90%-99% accuracy with F1>94% for new

attacks.

These are significant steps towards KPI K3.3.

• Demonstrated distributed in-network computing across 1000 nodes, in-line with

expected number of devices/vehicles to be considered in the SMARTEDGE scenarios.

This is a significant step towards KPI K3.4.

As WP4 progresses, the architecture will keep evolving as the SmartEdge research questions are

investigated in greater depth. It is in the nature of research and innovation projects that new

techniques will be investigated and trialed, and better options are chosen. It is therefore

important that the architecture provides a solid basis for developing and implementing the

innovative features of SmartEdge, without being too proscriptive so as to restrict WP4 growth.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

55

7 REFERENCES

[Bar21] Barefoot Networks, “Version 1.0 Switch Architecture Model. Website,”
https://github.com/p4lang/p4c/blob/main/ p4include/v1model.p4. 2021.

[Bar23] L. Barsellotti, L. De Marinis, F. Cugini, F. Paolucci, “FTG-Net: Hierarchical Flow-To-Traffic
Graph Neural Network for DDoS Attack Detection”, HPSR Conference 2023.

[Bas20] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mitzenmacher, “PINT:
Probabilistic In-band Network Telemetry,” In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies, architectures,
and protocols for computer communication. 662–680. 2020.

[Blö21] M. Blöcher, L. Wang, P. Eugster, and M. Schmidt, “Switches for HIRE: Resource
Scheduling for Data Center In-Network Computing. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems,” 268–
285. 2021.

[Bos14] P. Bosshart et al., “P4: Programming protocol-independent packet processors,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, jul 2014.

[Bus19] C. Busse-Grawitz, R. Meier, A. Dietmuller, T. B ¨ uhler, and L. Vanbever, ¨ “pForest: In-
network inference with random forests,” arXiv preprint arXiv:1909.05680, 2019.

[Dan20] H. Tu Dang, P. Bressana, H. Wang, K. Suh Lee, N. Zilberman, H. Weatherspoon, M. Canini,
F. Pedone, and R. Soulé, “P4xos: Consensus as a Network Service,” IEEE/ACM Transactions on
Networking 28, 4 (2020), 1726–1738. 2020.

[Del23] DELL Technologies, “Dell EMC Edge Gateway 5200 software user’s guide,” 2023.
[Online]. Available: https://dl.dell.com/content/ manual77941191-dell-emc-edge-gateway-
5200-software-user-s-guide.

[Esk20] M. Eskandari, Z. H. Janjua, M. Vecchio, and F. Antonelli, “Passban IDS: An Intelligent
Anomaly-Based Intrusion Detection System for IoT Edge Devices,” IEEE Internet of Things
Journal, vol. 7, no. 8, pp. 6882–6897, 2020.

[Fer22] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke, “Edge-iiotset: A new

comprehensive realistic cyber security dataset of iot and iiot applications: Centralized and

federated learning.” IEEE Dataport, 2022.

[Gur21] V. Gurevich and A. Fingerhut, “P4-16 Programming for Intel Tofino Using Intel P4
Studio,” In P4 Workshop, 2021.

[Hin21] H. Hindy, C. Tachtatzis, R. Atkinson, E. Bayne, and X. Bellekens, “Developing a siamese
network for intrusion detection systems,” in Proceedings of the 1st Workshop on Machine
Learning and Systems, ser. EuroMLSys ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 120–126.

[Hog22] M. Hogan, S. Landau-Feibish, M. Tahmasbi Arashloo, J. Rexford, and D. Walker,
“Modular Switch Programming Under Resource Constraints. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22),” USENIX Association, Renton, WA,
193–207. https://www.usenix.org/conference/nsdi22/presentation/hogan. 2022.

[Int21] Intel, “P4_16 Intel® Tofino™ Native Architecture – Public Version,”
https://github.com/barefootnetworks/OpenTofino/blob/master/PUBLIC_Tofino-Native-Arch-
Document.pdf. 2021.

https://www.usenix.org/conference/nsdi22/presentation/hogan
https://github.com/barefootnetworks/OpenTofino/blob/master/PUBLIC_Tofino-Native-Arch-Document.pdf
https://github.com/barefootnetworks/OpenTofino/blob/master/PUBLIC_Tofino-Native-Arch-Document.pdf

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

56

[Jia20] Y. Jia, F. Zhong, A. Alrawais, B. Gong, and X. Cheng, “Flowguard: An intelligent edge
defense mechanism against iot ddos attacks,” IEEE Internet of Things Journal, vol. 7, no. 10, pp.
9552–9562, 2020.

[Jin17] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica, “NetCache: Balancing
Key-Value Stores with Fast In-Network Caching,” In Proceedings of the 26th Symposium on
Operating Systems Principles. 121–136, 2017.

[Kol20] R. Kolcun et al., “The case for retraining of ML models for iot device identification at the
edge,” arXiv preprint arXiv:2011.08605, 2020.

[Kon15] J. Konecnˇ y, B. McMahan, and D. Ramage, “Federated optimization: ` Distributed
optimization beyond the datacenter,” arXiv preprint, 2015.

[Lao21] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, and M. Swift, “ATP: In-network
Aggregation for Multi-tenant Learning,” In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21). 741–761. 2021.

[Lak21] S. Laki, R. Stoyanov, D. Kis, R. Soule, P. V ´ or¨ os, and N. Zilberman, ¨ “P4Pi: P4 on
Raspberry Pi for networking education,” SIGCOMM Comput. Commun. Rev., vol. 51, no. 3, p.
17–21, jul 2021.

[Li20] J. Li, J. Nelson, E. Michael, X. Jin, and D. R. K. Ports, “Pegasus: Tolerating Skewed Workloads
in Distributed Storage with in-Network Coherence Directories,” In Proceedings of the 14th
USENIX Conference on Operating Systems Design and Implementation (OSDI’20). USENIX
Association, USA, Article 22, 20 pages. 2020.

[Lin18] Z. Lin, M. Hashimoto, K. Takigawa, and K. Takahashi, "Vehicle and Pedestrian Recognition
Using Multilayer Lidar based on Support Vector Machine," 2018 25th International Conference
on Mechatronics and Machine Vision in Practice (M2VIP), Stuttgart, Germany, 2018.

[Lou22] F. Loui, C. Mate, A. Gall, and M. Wisslé, “Project Overview: Router for Academia
Research & Education (RARE) ,” 2022.

[Mad22] S. Maddock, G. Cormode, T. Wang, C. Maple, and S. Jha, “Federated boosted decision
trees with differential privacy,” in CCS ’22, 2022.

[Pal16] K. Palani, E. Holt, and S. Smith, “Invisible and forgotten: Zero-day blooms in the iot,” in
2016 IEEE International Conference on Pervasive Computing and Communication Workshops,
2016, pp. 1–6.

[Par18] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey on low latency towards
5g: Ran, core network and caching solutions,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 4, pp. 3098– 3130, 2018.

[Pas21] A. Pashamokhtari, N. Okui, Y. Miyake, M. Nakahara, and H. H. Gharakheili, “Inferring
connected IoT devices from ipfix records in residential ISP networks,” in 2021 IEEE 46th
Conference on Local Computer Networks (LCN), 2021, pp. 57–64.

[Ped11] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[Sha18] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new intrusion

detection dataset and intrusion traffic characterization,” in Proceedings of the 4th International

Conference on Information Systems Security and Privacy, ICISSP, 2018, pp. 108–116.

[Sir22] G. Siracusano, S. Galea, D. Sanvito, M. Malekzadeh, G. Antichi, P. Costa, H. Haddadi, and

R. Bifulco, “Re-architecting traffic analysis with neural network interface cards,” in NSDI 22,

2022, pp. 513–533.

D4.1 Design of Dynamic & Secure Swarm Networking SmartEdge GA 101092908

57

[Sto18] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu, “Debugging P4
Programs with Vera,” In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication. 518–532. 2018.

[Ten17] C.-C. Teng, J.-W. Gong, Y.-S. Wang, C.-P. Chuang, and M.-C. Chen, “Firmware over the
air for home cybersecurity in the internet of things,” in 2017 19th Asia-Pacific Network
Operations and Management Symposium (APNOMS), 2017, pp. 123–128.

[Zan22] M. Zang, C. Zheng, R. Stoyanov, L. Dittmann, and N. Zilberman, “P4pir: in-network
analysis for smart iot gateways,” in Proceedings of the SIGCOMM’22 Poster and Demo Sessions,
2022, pp. 46–48.

[Zan23-1] M. Zang, C. Zheng, L. Dittmann, and N. Zilberman, “Towards Continuous Threat
Defense: In-Network Traffic Analysis for IoT Gateways,” IEEE Internet of Things Journal, 2023.

[Zan23-2] M. Zang, C. Zheng, T. Koziak, N. Zilberman, and L. Dittmann, "Federated Learning-
Based In-Network Traffic Analysis on IoT Edge", IFIP Networking 2023 Sec4IoT Workshop, June
2023.

[Zhe22] C. Zheng, M. Zang, X. Hong, R. Bensoussane, S. Vargaftik, Y. Ben-Itzhak, and N.
Zilberman, “Automating In-Network Machine Learning,” arXiv preprint arXiv:2205.08824, 2022.

[Zhe23-1] C. Zheng, X. Hong, D. Ding, S. Vargaftik, Y. Ben-Itzhak, and N. Zilberman, “In-Network
Machine Learning Using Programmable Network Devices: A Survey,” IEEE Communications
Surveys & Tutorials, pages 1–1, 2023.

[Zhe23-2] C. Zheng, B. Rienecker, and N. Zilberman, “QCMP: Load Balancing via In- Network
Reinforcement Learning,” In Proceedings of the 2nd ACM SIGCOMM Workshop on Future of
Internet Routing & Addressing, pages 35–40, 2023.

[Zhe23-3] C. Zheng, H. Tang, M. Zang, X. Hong, A. Feng, L. Tassiulas, and N. Zilberman. DINC:
Toward Distributed In-Network Computing. Proceedings of the ACM on Networking,
1(CoNEXT3):1–25, 2023.

[Zhe23-4] C. Zheng, H. Tang, M. Zang, X. Hong, A. Feng, L. Tassiulas, and N. Zilberman, “DINC -
GitHub Repository,” https://github.com/In-Network-Machine-Learning/DINC. 2023.

[Zhe24] C. Zheng, Z. Xiong, T. T Bui, S. Kaupmees, R. Bensoussane, A. Bernabeu, S. Vargaftik, Y.
Ben-Itzhak, and N. Zilberman, “IIsy: Hybrid In-Network Classification Using Programmable
Switches,” IEEE Transactions on Networking, 2024.

[Zho19] Y. Zhou, J. Bi, C. Zhang, B. Liu, Z. Li, Y. Wang, and M. Yu, “P4DB: On-the-fly Debugging
for Programmable Data Planes,” IEEE/ACM Transactions on Networking 27, 4 (2019), 1714–
1727. 2019.

https://github.com/In-Network-Machine-Learning/DINC.%202023

