

SmartEdge
Semantic Low-code Programing

Tools for Edge Intelligence
This project is supported by the European Union’s Horizon RIA research

and innovation programme under grant agreement No. 101092908

Deliverable D5.1

Design of low-code programming tools

for edge intelligence

Lead Editor D. Le-Phuoc (TUB)

Contributors M. Bagheri (CONV), L. Bassbouss (FhG),D Bowden (DELL), P.Cudre-

Mauroux(FRIB), K. Dorofeev (SAG), A. Ganbarov (TUB), M. Grassi

(FEC), X. Guo (TUB), I. Kosonen (AALTO), A. Le-Tuan (TUB), G.

Michelangelo(CNIT), M. Milich (BOSCH), D. Nguyen (TUB), A. Paul

(FhG), S. Paul (TUB), E. Petrova (IMC), D. Raggett(W3C), M.

Scrocca (CEF), D. Tran(BOSCH), T. Tran (BOSCH), J. Yuan (TUB),

N.Zilberman (UOXF)

Version 2.2

Date 21 02, 2024

Distribution PUBLIC (PU)

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

DISCLAIMER

This document contains information which is proprietary to the SmartEdge (Semantic Low-code

Programming Tools for Edge Intelligence) consortium members that is subject to the rights and

obligations and to the terms and conditions applicable to the Grant Agreement number

101092908. The action of the SmartEdge consortium members is funded by the European

Commission.

Neither this document nor the information contained herein shall be used, copied, duplicated,

reproduced, modified, or communicated by any means to any third party, in whole or in parts,

except with prior written consent of the SmartEdge consortium members. In such case, an

acknowledgement of the authors of the document and all applicable portions of the copyright

notice must be clearly referenced. In the event of infringement, the consortium members

reserve the right to take any legal action it deems appropriate.

This document reflects only the authors’ view and does not necessarily reflect the view of the

European Commission. Neither the SmartEdge consortium members as a whole, nor a certain

SmartEdge consortium member warrant that the information contained in this document is

suitable for use, nor that the use of the information is accurate or free from risk, and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is provided as is and no guarantee or warranty is given that

the information is fit for any particular purpose. The user thereof uses the information at its sole

risk and liability.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

REVISION HISTORY

LIST OF AUTHORS

Revision Date Responsible Comment

0.1 01, 06, 2023 TUB Layout and Structure

0.2 01, 10, 2023 TUB Initial content

0.3 13, 11, 2023 TUB Updated layout and structure

0.4 20,11,2023 TUB Updated content T5.3 and T5.4

0.5 27/11/2023 TUB New outline for all tasks

0.6 04/13/2023 TUB Update sections with assignments to partners

0.7 05/02/2023 TUB Content assignments to all sessions

1.0 12/02/2024 TUB All contents

1.2 15/02/2024 TUB First Draft for Task leader reviews

2.0 19/02/2024 TUB Prepare for final draft

2.2 21/02/2024 TUB Submitted for Qualify Review

Partner Name Surname Contributions

CNIT Guaitolini Michelangelo Section 4.4.3

TUB Danh Le-Phuoc Executive and outline, Editor of Section 1

TUB Anh Le-Tuan Editor of Section 4 and 5

TUB Duc Manh Nguyen Section 4 and 5

TUB Jicheng Yuan Section 5.4.2.3

TUB Sumit Paul Section 4.3.1

TUB Xuanchi Guo Section 4.3.2

TUB Ali Ganbarov Section 5.4.2.4

BOSCH Trung-Kien Tran Editor of Section 3

BOSCH Duong Tran Editor of Section 3

BOSCH Marcel Milich Editor of Section 3

FRIB Philippe Cudre-Mauroux Editor of Section 4

CONV Mehrdad Bagheri Section 2.4.2.3, 5.4.1.2.1

CEF Mario Scrocca Editor of Section 3.4.3.2

CEF Marco Grassi Editor of Section 3.4.3.2

FhG Louay Bassbouss Editor Section2.4.2.4; Section 5.4.4.3

FhG André Paul Editor Section2.4.2.4; Section 5.4.4.3

DELL David Bowden Section 2.4.2.2

AALTO Iisakki Kosonen Section 5.4.1.2.1.

SAG Kirill Dorofeev Section 5.4.4

W3C Dave Raggett Section 2.4.1; 5.4.4.5

UOXF Noa Zilberman Section 5.4.4.2

IMC Elena Petrova Section 5.4.4.3

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

GLOSSARY

Acronym Description

ABR Adaptive Bitrate Streaming

AMR Autonomous Mobile Robot

API Application Program Interface

ARM Acorn Reduced Instruction Set Machine

CAN bus Controller Area Network bus

CaS Compare and Swap

CCTV Closed Circuit Television

CDN Content Delivery Network

CNN Convolutional Neural Network

COCO Common Object in Context

CPU Central Processing Unit

CQELS Continuous Query Evaluation over Linked Streams

CXL Compute Express Link

DASH Dynamic Adaptive Bitrate over HTTP

DCAT Data Catalog vocabulary

DDS Data Distribution Services

DETR Detection Transformer

DKG Dynamic Knowledge Graph

DMA Direct Memory Access

DPU Data Processing Units

D-RDMA Declarative Remote Direct Memory Access

DSL Domain-specific Language

FaA Fetch and Add

FAIR Findability, Accessibility, Interoperability, and Reusability of digital asset

FPGA Field Programmable Gate Arrays

FRCNN Fast Region-based Convolutional Neural Network

GDS Global Data Space

GeoSPARQL Resource Description Frame geospatial query language

GPM Graph Pattern Mining

GPS Global Positioning System

GPU Graphical Processing Unit

HLS Hypertext Transfer Protocol Live Streaming

HPC High-performance Computing

HTTP Hypertext Transfer Protocol

IDM Identity Management

IMU Inertial Measurement Unit

IoT Internet of Things

IoU Intersection over Union

IRI Internationalized Resource Identifier

ISD Integrated Surface Dataset

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

iWARP Internet Wide Area Remote Direct Memory Access Protocol

JPEG Joint Photographic Experts Group image format

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation Linked Data

JVM Java Virtual Machine

LAN Local Area Network

LiDAR Light Detection and Ranging

MAC Media Access Control

MAT Match-action Tables

MAU Match-action Unit

MEMS Micro-Electro-Mechanical Systems

ML Machine Learning

NARF Normal Aligned Radial Feature

NAS Neural Architecture Search

NCDC National Climatic Data Center

NCR Non-contiguous Regions

NIC Network Interface Card

OMG Object Management Group

ONOS Open Network Open System

OBU On-board Unit (V2X wireless communication hardware inside a

connected vehicle)

P2P Peer-2-peer

P4 Programming Protocol-independent Packet Processors

PNG Portable Network Graphics

QET Query Execution Time

QoS Quality of Service

QP Queue Pairs related to Remote Direct Memory Access

QR Quick Response an evolution of bar codes

RAM Random Access Memory

RCNN Region-based Convolutional Neural Network

RTSP Real-Time Streaming Protocol

RDF Resource Description Frame

RDMA Remote Direct Memory Access

REST Representational State Transfer

RGB Red, Green, Blue referring to color images

RGBD Red, Green, Blue, Depth referring to color images with a depth channel

RML Resource Description Frame Mapping Language

RoCE Remote Direct Memory Access over Converged Ethernet

ROS Robot Operating System

RPC Remote Procedure Call

RSU Road-side Unit

SGE Scatter-gather Element

SHACL Shapes Constraint Language

SLAM Simultaneous Localization and Mapping

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

SPARQL Resource Description Frame query language

TCP Transmission Control Protocol

TD Thing Description part of the WoF

TDD Thing Description Directory part of the WoF

TTL Time-to-live

UDP User Datagram Protocol

URI Uniform Resource Identifiers

UUID Universally Unique Identifier

V2X Vehicle to everything

WebRTC Web Real-Time Communication

WoF Web of Things

WR Work Request

YOLO You Only Look Once

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

EXECUTIVE SUMMARY

Deliverable D5.1 reports the first iteration of the design of low-code programming tools for Edge

Intelligence in the SmartEdge project. The document focuses the design of four parts of the

toolchain corresponding to four tasks of WP5: 1) Semantic-driven Multi-modal sensor fusion for

edge devices; 2) Swarm Elasticity via Cloud-Edge Interplay; 3) Adaptive Coordination and

Optimization; 4) Cross-layer toolchain for Device-Edge-Cloud Continuum. To improve the

design’s feasibility towards the next implementation stage and KPIs, several initial

implementations of individual components or subsystems are carried out to provide insights for

their next versions of the implementation in D5.2.

WP5 aims to provide an integrated toolchain to lower the effort in building Edge Intelligence.

Based on semantic descriptions of sensing and computing capabilities as well as data queries,

the toolchain will decouple the application logic to underlying complicated software, hardware

and networking elements. On the other hand, the semantic descriptions and specifications are

the key enabler to integrate the elements into execution pipelines at run time without a prior

knowledge of them. Hence, the semantic data model is the unified data presentation as the

integration point for all components designed in D5.1. Firstly, the sensor fusion of multimodal

data of T5.1 will use RDF as the intermediate data representation among the operations that

provide the unified input/output data presentations to operators that can be processed and

integrated in T5.2, T5.3 and T5.4. Secondly, the declarative programming approach for low-code

programming across the layers (e.g, network, RDMA, sensor fusion, orchestration, optimization

and runtime) can provide different domain-specific languages (DSLs) that be seamlessly

integrated via RDF data model and graph query patterns. In particular, T5.2 allows T5.1 to

offload their sensor fusion operations that can be expressed a graph query patterns and similarly

T5.3 also can orchestrate the federated processing workloads represented in SPARQL-like query

languages. Eventually, the SmartEdge runtime pushes one step further in using RDF data as

dynamic knowledge graphs (DKGs) that unifies traditional knowledge graphs and semantic

streams. DKGs help to integrate sensory data from T5.1 with operational and environment data,

e.g. network telemetries, hardware configuration, training data, host environments, into

queryable form with graph query language like SPARQL so that SmartEdge nodes can

programmatically access it in a unified via in a distributed fashion.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

Table of Contents

1 Introduction.. 1

1.1 Low-code For Edge Intelligence.. 1

1.2 Review of KPIs and Baselines .. 2

2 Semantic-driven Multimodal Stream Fusion For Edge Devices .. 3

2.1 Overview of Stream Fusion .. 3

2.2 Requirements and KPIs ... 4

2.3 Preliminaries and State of the Art .. 6

2.4 Architecture and Design ... 7

2.4.1 Design Overview ... 7

2.4.2 Object Detection, Integration of Sensors, and Scene Understanding 8

2.4.3 Semantic Data Stream Fusion... 24

3 Swarm elasticity via edge-cloud interplay .. 28

3.1 Overview of edge-cloud interplay .. 28

3.2 Requirements and KPIs ... 29

3.2.1 Requirements ... 29

3.2.2 KPIs ... 30

3.3 Preliminaries and state of the art ... 30

3.3.1 An introduction to modern data exchange and its challenges 31

3.3.2 Declarative Data Exchange ... 34

3.3.3 Heterogeneous, Low-Code Computing .. 37

3.4 Architecture and design ... 37

3.4.1 General architecture .. 37

3.4.2 Integration with SmartEdge generic architecture .. 38

3.4.3 Integration with Use-Cases... 38

3.4.4 D-RDMA extensions .. 41

3.4.5 CXL Extensions .. 42

3.4.6 Offloading computations .. 42

3.4.7 Offloading Complex SmartEdge Operations Using SPARQL.................................. 48

3.4.8 Runtime Optimizer ... 49

4 Adaptive coordination and optimization Mechanisms ... 51

4.1 Overview of Swarm Coordination and Optimization .. 51

4.2 Requirements ... 53

4.3 Preliminaries And State of The Art ... 58

4.3.1 Data Distribution Service -based Communication .. 59

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

4.3.2 P2P-based Discovery and Federation ... 70

4.4 Component Design ... 75

4.5 Semantic-Based Discovery and Formation of Swarm ... 77

4.5.1 RDFizing P4-based network information into Dynamic Knowledge Graph 79

4.5.2 Network-aware Swarm Formation with DDS.. 82

4.6 Orchestration via Continuous Query Federation.. 86

4.6.1 Preliminary Experiment and Results ... 88

4.6.2 From empirical insights to design and implementation of Orchestrator and

Optimizer 91

5 Cross Layer toolchain for device-edge-cloud Continuum ... 93

5.1 Overview of cross-layer tool chain for Device-Edge-Cloud CONTINUUM 93

5.2 Requirements ... 94

5.3 Preliminaries And Stage of The Art ... 97

5.3.1 Object Detections for Edge Devices ... 97

5.3.2 Preliminary results for Semantic Programming for edge computing 100

5.4 Model and design ... 101

5.4.1 Semantic Programming Model for Low-code Programming 101

5.4.2 Integrate/deploy/build toolchain into execution target/environments. 112

5.4.3 SmartEdge Processing Primitives ... 125

5.4.4 SmartEdge plugins .. 126

5.4.5 Application-support Adaptors/Connectors .. 133

6 Conclusions... 141

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

Table of Figures

FIGURE 1-1. FROM SMARTEDGE LOW-CODE TOOLCHAIN TO SMARTEDGE RUNTIME ... 1
FIGURE 2-1 ILLUSTRATION OF OBJECT DETECTION, UNIFIED SCENE GRAPH, AND RESPECTIVE SPARQL QUERIES TO OBTAIN

INFORMATION. ... 4
FIGURE 2-2. OVERVIEW OF THE SEMANTIC MULTIMODAL STREAM FUSION PIPELINE.. 7
FIGURE 2-3. AN OVERVIEW OF THE FRAMEWORK FOR SCENE GRAPH GENERATION .. 11
FIGURE 2-4. OBJECT BOUNDING BOXES AND LABELS THAT WERE DETECTED FROM THE CAMERA. 12
FIGURE 2-5. THE EXPLICIT FEATURES OF OBJECTS ... 13
FIGURE 2-6. A SUBGRAPH OF CONCEPTNET SHOWING THE CONNECTION BETWEEN NODES .. 14
FIGURE 2-7. SENSORS USED IN OPERATIONAL AREA .. 16
FIGURE 2-8. MEMS LIDAR CAMERAS (LEFT) AND STEREOSCOPIC DEPTH CAMERAS (RIGHT) .. 16
FIGURE 2-9. RACK WITH QU IDENTIFICATION CODE AND FLOOR MOUNTED QR CODE AND CALIBRATION CHESSBOARD 17
FIGURE 2-10. SEMANTIC SENSOR STREAM FUSION PIPELINE ... 18
FIGURE 2-11. SEMANTIC SCENE GRAPH.. 19
FIGURE 2-12. ILLUSTRATION OF RACK MOVING BETWEEN OPERATIONAL AREAS (LEFT) AND A 2D OCCUPANCY MAP (RIGHT) 20
FIGURE 2-13. MEDIA STREAM PROCESSING PIPELINE ... 23
FIGURE 2-14: EXAMPLE OF STREAM DESCRIPTION USING W3C WEB OF THINGS CONCEPTS AND ADDITIONAL METADATA. .. 26
FIGURE 2-15: EXAMPLE OF JSON INPUT AND RDF OUTPUT FOR OBJECT DETECTION. ... 27
FIGURE 3-1: (LEFT) STANDARD RDMA FORCES THE DATABASE TO ENQUEUE WORK REQUESTS FOR EVERY FRAGMENT. 35
FIGURE 3-2: CONTIGUOUS REGIONS ARE INSUFFICIENT TO CAPTURE COMPLEX DATA PATTERNS.. 36
FIGURE 3-3. THE LIFE OF AN OPERATION IN THE D-RDMA RUNTIME FROM A SYSTEM’S PERSPECTIVE (A). 37
FIGURE 3-4: SOME OF THE NODES AND HARDWARE DEVICES AVAILABLE IN HELSINKI FOR UC2 ON THE ROAD (A) AND IN

INSTRUMENTED CARS (B). ... 39
FIGURE 3-5: INTEGRATION OF T5.2 WITH UC2; OFFLOADING WILL BE POWERED BY D-RDMA BETWEEN EDGE NODES AND

FURTHER EDGE NODES WITH SPECIFIC ACCELERATORS; CLOUD NODES COULD ALSO BE USED IN THAT CONTEXT. 39
FIGURE 3-6: AN INTEGRATED DATA VIEW OF VARIOUS SMART COMPONENTS FOR UC2 ... 40
FIGURE 3-7: AN EXAMPLE OF A D-RDMA EXTENSION TO ACCELERATE FILTERING AND EXCHANGE OF DATA FOR UC2 41
FIGURE 3-8: SAMPLE RESULTS FOR THE OFFLOADED FACE BLURRING OPERATION SHOWING THE ORIGINAL IMAGE. 43
FIGURE 3-9: (TOP) THE SWITCH IS COMPOSED OF A CONTROL PLANE AND A DATA PLANE. THE DATA PLANE HAS A 45
FIGURE 3-10: INTERMEDIATE RESULTS GENERATED FROM GPM COMPUTATION ON TWO WELL-KNOWN GRAPHS 47
FIGURE 3-11: OUR OFFLOADING FRAMEWORK MAIN WORKFLOW. THE EDGE NODES AND A P4 ACCELERATOR 48
FIGURE 3-12: COMPARISON OF RUNNING GPM TASK ENTIRELY ON NODES (SERVERS) USING A STATE-OF-THE-ART. 48
FIGURE 3-13: THE DESIGN OF OUR RUNTIME OPTIMIZER FOR OFFLOADING OPERATIONS IN SMARTEDGE; 49
FIGURE 3-14: THE THREE LAYERS OF OPTIMIZATION THAT WILL BE SUPPORTED BY OUR RUNTIME OPTIMIZER. 50
FIGURE 4-1. ARCHITECTURAL OVERVIEW OF SMARTEDGE ORCHESTRATOR AND OPTIMIZER ... 52
FIGURE 4-2. PUBLISHER FREQUENCY IMPACT ON THE LATENCY USING ECLIPSE CYCLONE DDS SAME DOMAIN WIRELESS

COMMUNICATION FOR RASPBERRY PI3.. 61
FIGURE 4-3. PUBLISHER FREQUENCY IMPACT ON THE LATENCY USING ECLIPSE CYCLONE DDS DIFFERENT DOMAIN WIRELESS

COMMUNICATION FOR RASPBERRY PI3.. 61
FIGURE 4-4. PUBLISHER FREQUENCY IMPACT ON THE LATENCY USING ECLIPSE CYCLONE DDS DIFFERENT DOMAIN WIRED

COMMUNICATION FOR RASPBERRY PI3.. 62
FIGURE 4-5. PUBLISHER FREQUENCY IMPACT ON THE LATENCY USING ECLIPSE CYCLONE DDS DIFFERENT DOMAIN WIRELESS

COMMUNICATION FOR RASPBERRY PI4.. 62
FIGURE 4-6. PUBLISHER FREQUENCY IMPACT ON THE LATENCY USING ECLIPSE CYCLONE DDS DIFFERENT DOMAIN WIRED

COMMUNICATION FOR RASPBERRY PI4.. 63
FIGURE 4-7. PUBLISHER FREQUENCY IMPACT ON THE LATENCY USING ECLIPSE CYCLONE DDS DIFFERENT DOMAIN WIRELESS

COMMUNICATION BETWEEN LAPTOP COMPUTERS.. 63
FIGURE 4-8. PUBLISHER FREQUENCY IMPACT ON THE LATENCY USING EPROSIMA DDS DIFFERENT DOMAIN WIRELESS

COMMUNICATION BETWEEN PI3 .. 64
FIGURE 4-9. PUBLISHER FREQUENCY IMPACT ON THE LATENCY USING EPROSIMA DDS DIFFERENT DOMAIN WIRELESS

COMMUNICATION BETWEEN PI4. ... 65

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

FIGURE 4-10. PUBLISHER FREQUENCY IMPACT ON THE LATENCY USING EPROSIMA DDS DIFFERENT DOMAIN WIRED

COMMUNICATION BETWEEN LAPTOP... 65
FIGURE 4-11. PUBLISHER FREQUENCY IMPACT ON THE LATENCY USING RTI CONNEXT DDS DIFFERENT DOMAIN WIRELESS

COMMUNICATION BETWEEN PI3. ... 67
FIGURE 4-12. PUBLISHER FREQUENCY IMPACT ON THE LATENCY USING RTI CONNEXT DDS DIFFERENT DOMAIN WIRED

COMMUNICATION BETWEEN PI3 .. 67
FIGURE 4-13. PUBLISHER FREQUENCY IMPACT ON THE LATENCY USING RTI CONNEXT DDS DIFFERENT DOMAIN WIRELESS

COMMUNICATION BETWEEN PI4 .. 68
FIGURE 4-14. PUBLISHER FREQUENCY IMPACT ON THE LATENCY USING RTI CONNEXT DDS SAME DOMAIN WIRELESS

COMMUNICATION BETWEEN LAPTOP... 68
FIGURE 4-15. ARCHITECTURE OVERVIEW OF P-GRID AND RDF4LED’S INTEGRATION ... 70
FIGURE 4-16. ATOMIC TRIPLE PATTERN- LISTING ALL OBSERVATIONS .. 72
FIGURE 4-17. QET OF ATOMIC TRIPLE PATTERN TP1 USING ISD DATASET. N IS THE NUMBER OF PEERS IN THE SYSTEM 73
FIGURE 4-18. QET OF ATOMIC TRIPLE PATTERNS TP1~4 USING ISD DATASET ON 16 PI4S ... 74
FIGURE 4-19. JOIN QUERY PATTERN CONTAINING 3 ATOMIC TPS -LISTING INFORMATION OF ALL OBSERVATIONS MADE BY A

SENSOR ... 74
FIGURE 4-20. QET OF MULTIPLE JOIN OPERATIONS WITH UNIFORM DATA DISTRIBUTION .. 75
FIGURE 4-21. SYSTEM ARCHITECTURE OF THE COORDINATOR & OPTIMIZER ... 76
FIGURE 4-22. JSON-LD SNAPSHOT OF SEMANTIC DESCRIPTION OF THE CAMARA LOCATED AT JUNCTION 270 IN HELSINKI .. 78
FIGURE 4-23. INTEGRATION OF DYNAMIC KNOWLEDGE GRAPH AND P4 RUNTIME FOR PACKET-LEVEL METADATA

COLLECTION ... 80
FIGURE 4-24. RDFIZING SWITCH-SPECIFIC AND ROBOT-SPECIFIC METADATA ... 81
FIGURE 4-25. SHARED REPOSITORY BETWEEN NETWORK CONTROL PLANE AND MIDDLEWARE LAYER 81
FIGURE 4-26. DYNAMIC KNOWLEDGE GRAPH (KG) USE CASE EXAMPLE WITHIN DDS MESSAGING FRAMEWORK 82
FIGURE 4-27. BUILT-IN TYPES SUPPOERTED BY ROS2 ... 84
FIGURE 4-28. SEMANTIC ROS DESIGN ... 85
FIGURE 4-29. KEY COMPONENTS TO ENABLE CONTINUOUS QUERY FEDERATION ... 87
FIGURE 4-30. BASELINE EXPERIMENT RESULT .. 89
FIGURE 4-31. TOPOLOGY .. 89
FIGURE 4-32. FAN-OUT FEDERATION EXPERIMENTS: PROCESSING THROUGHPUT RESULTS .. 90
FIGURE 4-33. FAN-OUT FEDERATION EXPERIMENTS: AVERAGE PROCESSING TIME RESULTS .. 91
FIGURE 5-1 PROFILING YOLO-SERIES MODELS ON JETSON AGX XAVIER. ... 99
FIGURE 5-2 PROFILING EDGE PERFORMANCE ACCORDING TO DIVER NUMBER OF CAMERAS. ... 100
FIGURE 5-3 EXAMPLE OF A SEMANTIC PROGRAM WHICH REASONS IF AN OBJECT ENTERS FIELD OF VIEW OF A CAMERA. 102
FIGURE 5-4. EXAMPLE OF DATA SCHEMA TO DESCRIBE RELATIONSHIPS OF CAMERA, OBJECT DETECTIONS AND OBJECT

DETECTION RESULTS ... 103
FIGURE 5-5. EXAMPLE OF A SEMANTIC STREAM SNAPSHOT OF CAMERA FRAME CAPTURED FROM CAMERA 160 DEPLOYED AT

JUNCTION 270.. 104
FIGURE 5-6. EXAMPLE SEMANTIC STREAMS PRODUCED BY AN OBJECT DETECTION ... 105
FIGURE 5-7. CORE CONCEPTS OF SMART TRAFFIC DATA SCHEMA .. 106
FIGURE 5-8. . A SNAPSHOT OF SEMANTIC DESCRIPTION OF A ROAD SEGMENT CONNECTED TO JUNCTION 270 IN TURTLE

FORMAT .. 106
FIGURE 5-9. SPARQL QUERY TO FIND ALL ROAD SEGMENTS CONNECT TWO JUNCTION USING PROPERTY PATH................ 107
FIGURE 5-10. LANE LAYOUT AT JUNCTION 270 IN HELSINKI SERVES AS AN EXAMPLE. ... 108
FIGURE 5-11. THE RELATIONSHIPS BETWEEN LANE, JUNCTION AND CONNECTING LANE .. 108
FIGURE 5-12. OCCUPANCY GRID REPRESENTS A 2-D GRID MAP. ... 110
FIGURE 5-13. SEMANTIC SLAM. CAMERA STREAM (LEFT) AND OCCUPANCY GRID MAP (RIGHT) WITH OBJECT DETECTION 111
FIGURE 5-14. SAMPLE SPARQL QUERY FOR PATH PLANING .. 112
FIGURE 5-15. OVERVIEW OF COMPONENT DESIGN OF SMARTEDGE LOW CODE TOOLCHAIN ... 113
FIGURE 5-16. EXECUTION CONTEXT ONTOLOGY EXTENDED FROM SMARTEDGE SCHEMA FROM D3.1 114
FIGURE 5-17. COMPONENT DESIGN OR SMARTEDGE RUNTIME .. 115
FIGURE 5-18 OVERVIEW OF VISIONKG PLATFORM .. 117

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

FIGURE 5-19 DATA QUERYING AND PIPELINE CONSTRUCTING VIA VISIONKG.. 118
FIGURE 5-20 DATA DIVERSITY IN VISIONKG ... 119
FIGURE 5-21 STATISTICS OF TRIPLES AND ENTITIES IN VISIONKG FOR OBJECT DETECTION AND IMAGE CLASSIFICATION

DATASETS .. 120
FIGURE 5-22. VECTOR SEARCH TIME COMPARISON BETWEEN TORNADO AND OPENCL ... 122
FIGURE 5-23. DISTRIBUTED EXECUTION ON ABSTRACTED HARDWARES ... 123
FIGURE 5-24. ARCHITECTURE MODULES OF A SWARM APPLICATION WITH ONE SMART-NODE AND ONE COORDINATOR 127
FIGURE 5-25. ARCHITECTURE OF DISTRIBUTED IN-NETWORK COMPUTING FRAMEWORK .. 128
FIGURE 5-26. COGNITIVE ARCHITECTURE FOR CHUNKS & RULES ... 131
FIGURE 5-27. CHUNKS & RULES SYNTAX AS RAILROAD DIAGRAMS ... 132
FIGURE 5-28. METRIC REPORTING AND VISUALIZATION .. 134
FIGURE 5-29. METRICS DASHBOARD... 135
FIGURE 5-30. REMOTE RENDERING AND STREAMING ARCHITECTURE .. 137
FIGURE 5-31. ARCHITECTURE OF MULTI-VIEW VISUALIZER TOOL .. 137
FIGURE 5-32. MULTI-VIEW VISUALIZER SCREENSHOT ... 138
FIGURE 5-33. SIMSWARM – SCREENSHOT OF SMART WAREHOUSE DEMO WITH ROBOT FORKLIFTS, 139

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

1

1 INTRODUCTION
D5.1 proposes the design of the low-programming tools for end intelligence which constitutes

the designs of following tools: i) semantic-based multimodal sensor fusion for edge devices

(Section 2 for T5.1), ii)Swarm elasticity via edge-cloud interplay (Section 3 for T5.2); iii)Adaptive

Coordinator and Optimization (Section 4 for T5.3); iv)Cross-layer toolchain for device-edge-cloud

continuum (Section 5 for T5.4). The designs all of such tools employ the same approach for low-

code programming, declarative programming (cf Section 1.1). The artifacts of such tools along

with the ones produced in WP3 and WP4 will integrated and deployed as a runtime for a

SmartEdge Swarm node as illustrated in following Figure 1-1.

Figure 1-1. From SmartEdge low-code toolchain to SmartEdge runtime

1.1 LOW-CODE FOR EDGE INTELLIGENCE
The hallmark of low-code programming of SmartEdge lies in its declarative programming model,

an approach that focuses on ‘what’ a domain expert wants a program should behave not ‘how’

to integrate constituent components together to build such a program. At its core, this model

uses semantic data model, i.e RDF, to interlink domain-expert knowledge with input data and

necessary components. Hence, it enables the creation of a toolchain running on edge-cloud

execution environments by leveraging the domain-specific knowledge of experts, organized

systematically within dynamic knowledge graphs (DKGs). These DKGs serve as the foundation

for constructing instructions that edge devices can execute or interpret, thus materializing

expert insight into computable operations.

The domain experts in SmartEdge are UC owners, traffic, car or robot engineers who will

declarative the ‘what’ a swarm of edge nodes should do via Domain-Specific Languages (DSLs)

that embody semantics familiar to their application domains, e.g traffic or factory floor, called

Semantic DSLs. Such DSLs are constructed from standardized data models and ontologies, e.g

RDF, SPARQL, SHACL and Recipes (cf D3.1). By reducing the complexity of traditional

programming constructs, e.g C++ or python, Semantic DSLs empower domain experts to directly

contribute to the development process, thus mitigating the necessity for in-depth programming

expertise in Data Ops, Network Ops and AIOps.

Furthermore, Smart low-code tools are not solely focused on the high-level application design;

they also strive to enhance the productivity of developers working at the lower layers of the

technology stack of Edge Intelligence, e.g, such as networking programming, Remote Direct

Memory Access (RDMA), and C++/python for ROS. By automating the time-consuming and

monotonous tasks traditionally performed manually, low-code toolchain aims to reduce the

potential for error and the overall burden on developers.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

2

The strategic advantage of low-code toolchain of WP5 is manifold. It seeks to alleviate the

shortage of developers skilled in lower-level programming languages such as C/C++ and P4. By

simplifying complex coding tasks and reusing coding artifacts in WP3-WP5, it minimizes the

likelihood of mistakes associated with manual coding and amplifies the efficiency gains across

an organization, enabling one individual’s low-code program to benefit their colleagues.

In essence, the SmartEdge low-code toolchain synergizes the intricate knowledge of subject

matter experts with the operational logic of computational systems. The seamless integration

of Semantic DSLs within the low-code paradigm exemplifies a shift towards a more inclusive and

efficient software development lifecycle, one where domain expertise is harnessed to its fullest

potential, fostering a collaborative and productive environment for developers across the layers

of swarm intelligence.

1.2 REVIEW OF KPIS AND BASELINES
D5.1 reviewed five KPIs and then established the baselines during the design phase to give

emperical insights as concrete references of folowing-up implementation and validation steps.

ID Descriptions Baselines

K4.1 Ability to free developers from specifying
capabilities of hardware and sensors at the design
phase of stream fusion pipelines with end-to-end
latency guarantee (e.g., 20-75% lower latency to
baselines [DTH+21, PET21]

Initial baselines [DTH+21,
PET21] will be evaluated in
edge devices and compared
with solutions proposed in
Sect. 5.3).

K4.2 Ability to elastically scale 200-500% better than the
state of the art, e.g., [Cudre-Mauroux13, Duc21,
Schneider22].

Specific baselines will be

selected for each application,

such as [Schneider22] for

graph applications, [Cudre-

Mauroux13] for distributed

RDF processing or [Duc21] for

stream fusion.

K4.3 Can dynamically optimize resource to be 50%-150%
better in terms of computing resources and
bandwidths;

Initial baselines implemented
and profiled at middleware
level(Sect. 4.3.1.14.3.14.3.1.3),
P2P storage level(Sect.4.3.2
4.3.2.2) and query federation
level(Sect. 4.6.14.6.1)

K4.4 Lower the effort in building swarm intelligence with
the target of reducing the coding effort in
comparison to imperative programming paradigms
by 80-90%, e.g., Python or C++, with SMARTEDGE
low-code tool chain.

Off-the-self implementations
in Python for UC2, UC3 and
UC4 will be used as baselines
for low-code programming
workflow of T5.4

K4.5 Support AI operations and coordination on a large
number of heterogeneous IoT devices (20-50 types
of 200-1000 devices) and smart systems (5-10
application domains) to achieve a higher resilience
in terms of being able to integrate new sensors and
participant nodes at runtime without interrupting
the current application logic

Initial baselines are developed
and profiled in Section 6.3
towards realistic data collected
from UC2 and UC3, then, test
to scale of 200-300 devices
(e.g. device types listed in
Sect.5.3.1)

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

3

2 SEMANTIC-DRIVEN MULTIMODAL STREAM FUSION FOR EDGE

DEVICES

2.1 OVERVIEW OF STREAM FUSION

In this section, we present the overview of this task and its connection to the other tasks and
use cases in the project.

The task will develop components to fuse multimodal stream data into high-level information

to be interoperable at semantic levels defined in WP3. The components will be parts of the

toolchain in WP5 to provide low-code access, e.g via SPARQL queries, to information about the

(swarm) devices and their surrounding environment. More specifically, given video frames and

sensor devices as inputs, we will provide components for the following subtasks:

1. Performing object detection and/or semantic segmentation to recognize devices and

their relations to each other and to the environment.

2. Alignment with ontology schemas developed in WP3.

3. Generating a semantic scene from video frames.

4. Integrating other sources of information e.g., sensor data.

5. Fusing these multimodal data so that it can be streamed, e.g. as RDF data, to use cases.

Figure 2-1 illustrates an initial step for the process of creating a semantic scene graph that

represent multiple modal information. We first perform object detection and extract their

annotation labels. To create a unified data model for the annotation labels and visual features,

we follow the Linked Data principles and use the RDF data model. The data entities (e.g., images,

boxes, labels) are named using Uniform Resource Identifiers (URI). RDF data model allows the

data to be expressed using triples of the form 〈subject, predicate, object>. For example, to

describe “an image (a video frame) contains a bounding box for a person”, we first assign unique

URIs, e.g., smartedge/img01 and smartedge/box01, for the image and the bounding box,

respectively to create the following triples for such image: 〈img01 , hasBox , box01 〉, 〈box01

, hasObject, obj01 〉, 〈obj01 , rdf : type, Person>; for simplicity, we skip the prefix in these

triples. Furthermore, we add metadata and semantic annotations, e.g. RDF-Star or use a

reification technique. The created semantic scene graph will facilitate semantic reasoning

capability and the interoperability over the whole project. It also enables for integrating

multimodal information, e.g. coming from semantic SLAM (se also Sec 5.4.1.2.2) or external

predefined domain knowledge.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

4

Figure 2-1 Illustration of object detection, unified scene graph, and respective SPARQL queries to obtain information.

We will collaborate with tasks in WP3 to define semantics of the data, e.g., via ontologies, and

the data model to represent multimodal information. This task also requires collaboration with

Task T5.2 when the computation needs to be shifted to nodes that are more powerful than edge

devices.

2.2 REQUIREMENTS AND KPIS

ID/Ver: SW-012/v1.2 Related Use Case(s): UC-3 Task: T5.1

Selected data originated by one node may be provided to multiple swarms. For example,

when a node is providing a sensor stream that could be of use to multiple swarms.

This requirement is addressed by using SPARQL queries specifying node and specific data
used in UC-3

ID/Ver: IDM-011/v1.2 Related Use Case(s): UC-1, UC-2, UC-3, UC5 Task: T5.1

Expression of situation specific conditions that trigger obfuscation or blurring of images and

mechanisms to execute.

This situation will be described using RDF(S).

ID/Ver: IDM-015/v1.2 Related Use Case(s): UC-3 Task: T5.1

Consent management system and compliance with metadata.

Task 5.1 will provide semantic description of all thel data sources including metadata (Sec

2.4.1, 2.4.2)

ID/Ver: IDM-016/v1.1 Related Use Case(s): UC-3 Task: T5.1

Methods for aggregation and differential privacy applied to streams.

Task 5.1 will implement this mechanism, e.g. via context attention outlined in Sec. 2.4.1.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

5

ID/Ver: LC-019/v1.2 Related Use Case(s): UC-2, UC-3 Task: T5.1

It should be possible to easily execute semantic queries, e.g. using scene understanding and

querying scene graphs, over sensor data (e.g., queue lengths in traffic situations) and make

that information available for the SmartEdge swarm nodes.

Task 5.1 provides graph query engine, e.g. SPARQL query engine, so that swam nodes can

execute semantic queries and obtain necessary information (Sec.2.4.2, 2.4.3)

ID/Ver: AL-010/v1.2 Related Use Case(s): UC-3 Task: T5.1

A tool must be implemented to take the image feeds from multiple cameras and triangulate

the position and pose of the object based on the image, e.g., three images could be obtained

by the three overhead cameras showing the same object from three different views. By

combining the three images, the tool should be able to orient the object in 3D space.

Task 5.1 provides component to construct semantic scene graphs (Sec 2.4.1, 2.4.2), which

provide details of objects in multiple cameras. It might be useful for 3D object orientation but

does not directly provide this function.

ID/Ver: AL-011/v1.1 Related Use Case(s): UC-2, UC-3, UC-5 Task: T5.1

A tool must be implemented to classify known objects in the specific use case domain, but

should also support the “unknown” classification, i.e., an object has been detected, but can’t

be classified with a reasonable degree of certainty.

Task 5.1 (Sec. 2.4.2) provides classification models in which “unknown” category is

considered.

ID/Ver: CSI-003/v1.1 Related Use Case(s): UC-1, UC-3 Task: T5.1

SmartEdge must provide tools or components for semantic segmentation of the objects of

interest in the environment. For examples, vehicles in traffic or AMRs in factories.

Task 5.1 (Sec 2.4.1, 2.4.2) provides semantic scene graphs for each application domain. This

scene graphs contain semantic segmentation of objects and other information in the

environment.

ID/Ver: CSI-004/v1.1 Related Use Case(s): UC-1, UC-3 Task: T5.1

SmartEdge must provide components for semantic scene construction. This is the follow up

step for CSI-003.

Task 5.1 (2.4.1, 2.4.2) provides semantic scene graphs. This is the main objective of Task 5.1.

ID/Ver: CSI-005/v1.2 Related Use Case(s): UC-1, UC-3, UC-5 Task: T5.1

SmartEdge must provide mechanisms to formalize external knowledge, (e.g., traffic rules or

physiotherapists’ rules, therapies, tasks), that are applicable for the current scene.

This requirement is addressed together with WP3 (Task 3.1) . In principle, Task T5.1 enables

the integration of rule-based languages, e.g. SHACL, RDFS, or OWL rules.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

6

2.3 PRELIMINARIES AND STATE OF THE ART
One of the most critical challenges arising in many use cases within and without SmartEdge is

how to combine multiple data types into a uniform representation. This merging process is

called data stream fusion. According to Gao et al. [Gao20], data fusion aims to “integrate the

data of different distributions, sources, and types into a global space in which both inter-

modality and cross-modality can be represented in a uniform manner”. This is often achieved by

leveraging the information each individual modality provides, as well as the cross-modality

interactions

between data types. We extend this notation to semantic data stream fusion by adding

semantics level to the data and integrating them in the streaming manner.

Stream fusion is the cornerstone of other features and use cases within SmartEdge that allows

it to integrate information from more than one modality. We first present the overview of

popular data stream fusion mechanisms and then propose the mechanism adopted for

SmartEdge. Those mechanisms differ based on when they occur in the event detection pipeline:

(i) data characterization-based approaches operate at the feature level, (ii) transformation-

based approaches learn the encoding of the features and fuse them at the representation level,

or (iii) at the decision level, by aggregating detection scores.

Data Characterization-Based Fusion. Fusion based on data characterization is implemented by

extracting key features from each modality and combining them into a joint representation.

Data characterization-based fusion mechanisms are composed of three stages. First, features

are manually extracted from each modality. Second, the selected features are preprocessed, by

applying normalization, scaling them to the same magnitude, or projecting them into the same

vector space. Third, the modalities are combined based on the extracted characteristics into a

fused data format.

Since the features extracted from the input modalities are usually of different scales, several

techniques apply rudimentary preprocessing such as normalization. Other proposed fusion

mechanisms to compute similarity scores within each modality such as geographic distances,

keyword overlaps, etc. To combine the preprocessed features, some techniques opt for a simple

concatenation of the values into a fused feature vector. Alternatively, one can combine the

features extracted from multimodal data source into a graph representation.

Transformation-Based Fusion. Transformation-based data fusion mechanisms include a

representation learning component, which is first trained on labeled data to transform each

modality into an internal latent representation. The data fusion occurs only in the second step,

by combining the transformed representations. The representation learning is achieved using

neural network architectures, with distinct models for each modality. These models transform

the input data into latent representations, which are then fused. For instance, the authors in

[Chen21, Khadanga19] transform time series and text by training two deep neural networks to

produce distinct latent vectors. These transformed representations are then fused, either by

simple concatenation or by means of an additional fully-connected neural network layer [Yang

21]. This type of architecture allows for an end-to-end pipeline, integrating the transformation-

based fusion with the downstream event detection task. During the training phase of the neural

networks, a backpropagation step iteratively improves the learned transformation functions.

Decision-based fusion. Decision-based fusion is usually used in a specific task or use case. It

consists of fusing separated scores, which reflects the goal of that use case, obtained from each

modality separately. To combine the results at the decision level, data fusion mechanisms

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

7

compute averages of the individual scores or train a model taking as input the individual scores

and producing a fused result. Combining distinct detection scores can be done by simply

averaging these scores or by weighted sum of all scores.

In SmartEdge, different use cases have different characteristics and requirements. To keep our

solutions generic enough, we propose to have a unified semantic representation of different

information sources and optionally feature or vector representation of distinct sources that we

will describe in the next section.

2.4 ARCHITECTURE AND DESIGN

2.4.1 Design Overview
In this section, we present our design of T5.1 for multimodal semantic stream fusion of

SmartEdge. Figure describes the overview of the semantic multimodal stream fusion pipeline.

This pipeline takes the media data, e.g. camera frames, and sensor data as inputs and provides

a semantic description of those data to down-stream tasks in different use cases.

Figure 2-2. Overview of the semantic multimodal stream fusion pipeline

Context & Attention. In addition to input data, applications should be able to specify the context

for interpreting sensor data. In essence, the context determines which features are considered

to be important to the application, e.g. in an automotive context, we are interested in vehicles,

pedestrians, lane markings, road signs and traffic lights, etc. In some cases, the context is

predetermined and not subject to change. In other cases, the context depends on the

application goals that vary over time. The context makes it possible to efficiently identify

relevant features in cluttered sensory environments, allowing the processor to ignore features

irrelevant to the current application needs.

Applications should also be able to specify the focus of attention to direct processing resources

to the specific features of interest at a given moment in time. An example might be a specific

vehicle in the field of view, or a specific road sign when we need to understand what it signifies,

e.g. information on which lane to take when crossing a junction. The means to specify context

and focus shows the need for backward flows that complement the feedforward flows involved

in progressively higher levels of interpretation of sensor data.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

8

A further architectural capability is the means to draw the application’s attention to features

that require immediate attention, for example, when a child runs out into the road after a ball.

This can be modelled as events that will trigger urgent behavioural changes. The classes of

events of interest can be described as part of the context model.

The Media Stream Processing Component (Section 2.4.3.2). This component includes the

software components required to make media streams from capturing devices for the different

Use Cases like 2D Cameras, LiDAR Cameras, etc. from cars or robots available in the appropriate

format for further components like Data Fusion.

Sensor Fusion Component (Section 2.4.3.1). This component aggregates the sensor data, e.g.

to calculate traffic indicators (queue length, vehicle density, option zone metrics, etc.) and for

the other prediction tasks.

Vision Scene Understanding (Section 2.4.2.1-2). The main goal of this component is to perform

vision tasks to identify objects in the scene, their relations between each other, and details of

the surrounding environment. There are two sub-components dedicated to traffic scene and

manufacturing scene.

Data Stream Fusion (Section 2.4.3). This component integrates all form of information, adding

semantic descriptions using a unified ontology/schema and semantic web standards, e.g. RDF(S).

Optionally, embedding representation of the data might be provided, depending on the

requirements from use cases.

Graph Stream Processing (Section 5.4.3). This component takes the semantic representation

from the previous component, performs query planning and execution, and provides the

results/information to the use cases.

2.4.2 Object Detection, Integration of Sensors, and Scene Understanding

2.4.2.1 Scene Understanding in Traffic

2.4.2.1.1 Introduction
In this section, we detail the component “Visual Scene Understanding” in the architecture

outlined in Figure 2-2.

Taking inspiration from the innate human capacity to effortlessly interpret and comprehend

visual scenes, visual scene understanding has long been hailed as the goal in computer vision. It

has already garnered significant interest from the research community. From the point of view

of graph theory, a scene graph is a directed graph with three types of nodes: object, attribute,

and relation. However, for the convenience of semantic expression, a node of a scene graph is

seen as either a "subject" or an "object" with all its attributes, while the relation is called a

"predicate", which describes how the "object" is related to the "subject". A subgraph can be

formed by connecting multiple triplets, containing all the adjacent nodes of the object.

Therefore, these adjacent nodes directly reflect the context information of the object. From the

top-down view, a scene graph can be broken down into several subgraphs, a subgraph can be

split into several triplets, and a triplet can be split into individual subject, object with their

attributes and relation. Accordingly, we can find a region in the scene corresponding to the

substructure that is a subgraph, a triplet, or an object. From this strict correspondence, a

conclusion can be drawn that the scene graph corresponding to a given scene is structurally

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

9

unique without considering differences in the semantic expression in a dataset with definite

relation categories and object classes, though, most of the time, it is incomplete. The uniqueness

supports the argument that the use of a scene graph as a replacement for a visual scene at the

language level is reasonable.

The general approach for scene graph generation typically involves a two-stage process. In the

initial stage, Object Detection is performed, wherein the goal is to identify and categorize objects

within a given visual scene. This task encompasses both localizing the objects and assigning them

to specific categories. Following Object Detection, the second stage focuses on Visual

Relationship Detection (VRD). In this stage, the model classifies the relationships between pairs

of detected objects, providing a more holistic understanding of the scene beyond individual

object instances. This two-stage approach allows for the creation of comprehensive scene

graphs that represent both the objects present and the relationships between them,

contributing to a richer interpretation of visual content in computer vision applications.

2.4.2.1.2 Related work and state-of-the-art
Object Detection

The ground-breaking R-CNN families, including fast R-CNN [Girshick15], faster R-CNN

[RenShaoqing15], R-FCN [Dai16], and Libra R-CNN [Pang19], alongside various iterations such as

ATSS [Biffi20], RetinaNet [Lin17], and FCOS [Tian19], have significantly advanced the field of

object detection. Central to their design is the one-to-many label assignment strategy, wherein

each actual object box is allocated to multiple coordinates in the detector's output. This

approach is employed in conjunction with proposals, anchors, or window centers as supervised

targets. Despite their impressive performance, these detectors heavily rely on several manually

crafted elements, such as non-maximum suppression procedures or anchor generation. In order

to create a more adaptable end-to-end detector, the DEtection TRansformer (DETR) [Carion20]

was introduced, conceptualizing object detection as a set prediction challenge. It incorporates a

one-to-one set matching scheme within a transformer encoder-decoder architecture.

Consequently, each actual object box is exclusively assigned to a specific query, eliminating the

necessity for multiple manually designed components that encode prior knowledge. This

strategy introduces a versatile detection pipeline, paving the way for numerous DETR variants

aimed at enhancing its performance further.

The pioneering object detector, DETR [Carion20], which relies on the transformer architecture,

integrates a one-to-one set matching approach for object detection, enabling fully end-to-end

object detection. The one-to-one set matching method initially computes the overall matching

cost using Hungarian matching and assigns a single positive sample with the lowest matching

cost to each actual object box. However, DNDETR demonstrates the slow convergence results

attributed to the instability of one-to-one set matching, prompting the introduction of denoising

training to address this challenge. YOLOv4 (You Only Look One-level [Chen21]) prioritizes the

swift operational speed of an object detector in production systems and emphasizes

optimization for parallel computations, as opposed to focusing on the theoretical indicator of

low computational volume (BFLOP). DINO [Zhang22] builds upon the sophisticated query

formulation from DAB-DETR [Liu22] and integrates an enhanced contrastive denoising

technique to attain cutting-edge performance. Group-DETR [Chen23] introduces a group-wise

one-to-many label assignment to leverage multiple positive object queries, akin to the hybrid

matching scheme in H-DETR [Jia23]. Co-DETR [Zong23], another DETR-based detector, addresses

the inherent limitation of one-to-one set matching, which tends to cause significant

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

10

inefficiencies during training. Consequently, this approach significantly alleviates the challenges

associated with the encoder's feature learning in one-to-one set matching.

Visual Scene Graph Generation

In the last ten years, there has been significant interest in scene graph generation (SGG) across

different communities. This interest stems from SGG's capacity to accurately depict the semantic

aspects of complex visual scenes. The primary goal of SGG is to recognize all objects present in

an image along with their visual relationships, requiring a fusion of visual perception and natural

language understanding. Consequently, substantial efforts have been dedicated to aligning

visual and semantic spaces to facilitate relationship representation learning. Additional

investigations have emphasized the significance of each subject-object pair in deducing

ambiguous relationships. Xu et al. [Xu17] suggest an iterative refinement approach by conveying

contextual messages, while Zellers et al. [Zellers18] employ a bidirectional LSTM to capture a

global context. Their notable success underscores the essential role of spatial context in

recognizing visual relationships. Consequently, subsequent studies emphasize the importance

of spatial context in the creation of scene graphs. Many of these works leverage graph

convolutional networks or similar architectures to facilitate message passing among diverse

objects. Chen et al. [Chen19] construct a graph that links identified objects based on statistical

correlations, utilizing it to comprehend context among different objects for prediction

regularization. In a similar vein, Tang et al. [TangKaihua19] devise a dynamic tree structure for

efficient encoding of context among various object regions. As the transformer model continues

to make remarkable advancements, an increasing number of studies suggest employing this

model type to acquire more representative features from spatial context. Cong et al. [Cong23]

introduce an encoder-decoder architecture that engages various attention mechanisms,

coupled with subject and object queries, to reason about visual feature context and

relationships. Kundu et al. [Kundu23] propose contextualized relational reasoning through a

two-stage transformer-based architecture, facilitating effective reasoning over cluttered and

intricate semantic structures. While these models exhibit impressive progress in static images,

they may encounter substantial performance declines when applied to discern dynamic visual

relationships in videos. This is due to the necessity for thorough exploration of temporal

consistency and transition correlations across different frames.

Visual Relation Detection

Hong and Pavlic [Hong21] introduce a zero-shot learning approach utilizing the Randomly

Weighted Feature Network (RWFN). This approach leverages similarities with other seen

relationships and background knowledge, represented through logical constraints between

subjects, relations, and objects. The goal is to predict triples that are absent from the training

set. Cui and Farazi [Cui22] propose VReBERT, a BERT-like transformer model designed for Visual

Relationship Detection. It incorporates a multi-stage training strategy to jointly process visual

and semantic features. Jiang and Taylor [Jiang23] present a discovery that exploiting hierarchical

structures among labels for relationships and objects significantly enhances the performance of

scene graph generation systems. They demonstrated that incorporating hierarchical relationship

reasoning can substantially improve the performance of a baseline model.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

11

2.4.2.1.3 Proposed solutions
The basic framework for scene graph generation is shown in Figure . Given a video frame, the

goal of the system is to generate a directed graph that strictly reflects the semantic relationship

between objects within the scene. Using an off-the-shelf object detector, the system first

extracts explicit features for objects, specifically their visual features, bounding boxes, and

labels. The labels are then used for mapping objects to nodes in a knowledge base. A knowledge

base, such as ConceptNet [Speer17], DBpedia [AuerSören17], Wikidata [Vrandečić14], is an

enormous set of triplets, where a triplet is in the form of (node, edge, node). This structure has

the same idea with a scene graph, which is also a set of triplets in the form of (subject, predicate,

object). Thus, the relations between nodes from a knowledge graph can be considered the

implicit features of the objects. These explicit features and implicit features can be combined

and further refined. Finally, predicate classifiers are used to predict the categories of objects and

predicates, and the scene graph is generated.

Figure 2-3. An overview of the framework for scene graph generation

Object Detection

At the forefront of the visual relationship detection process, the object detection module serves

as the initial component in the pipeline. In this project, we employ Grounding DINO

[LiuShilong23], a robust open-set object detector designed to identify diverse objects specified

through human language inputs. The objective is to create a comprehensive scene graph by

detecting all potential objects or object proposals within the image, grouping them into pairs,

and utilizing the features of their combined area (referred to as relation features) as the

fundamental representation for predicate inference. Figure illustrates an instance of object

bounding boxes successfully detected from a real-time video. The prompt texts for the detector

were "person", "crosswalk", "car", and "traffic light".

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

12

Figure 2-4. Object bounding boxes and labels that were detected from the camera.

Feature Representation: Explicit Features

From the objects that were detected by the object detector, we construct the explicit features

for the relationship of each pair of objects in three aspects: visual, spatial, and semantic. Visual

features are the CNN features of the two objects. Spatial features are the bounding boxes and

coordinates of the two objects which encode their spatial layouts. Semantic features are the

class labels of the two objects that provide a strong prior of the predicate. It is a very popular

approach that these three features are combined in an early stage to learn a compositional

feature for relationship prediction. However, that makes the contribution of each feature

unclear and unoptimized. Inspired by the work of Zhang et. al [ZhangJi18], we separate the three

features in an explicit and interpretable way. We further assume that the three features are

independent from each other. So we can build three separate branches of sub-networks for

them. How we optimize each of these features will be investigated later. We only fuse the

optimized features in the final stage to get the relation prediction. The idea of explicit features

is illustrated in Figure .

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

13

Figure 2-5. The explicit features of objects

Feature Representation: Implicit Features

The scene graph is a semantically structured description of a visual world. Although visual

relationships are scene-specific, there are strong semantic dependencies between the scene

entities (subject and object) and the relationship predicate in a relationship triplet (subject,

predicate, object). For example, when “person”, “car” and “crosswalk” are detected individually

in an image, the most likely visual triplets are (person, on, crosswalk). Similarly, (car, on,

crosswalk) is possible, though less frequent. But (car, on, person) is normally unreasonable. We

can observe that the determination of the relation category often depends on the labels of the

participating subject and object. This allows us to assign weights to the probability output of

relationship detection networks based on statistical co-occurrences, potentially enhancing the

performance of visual relationship detection. Therefore, we suggest leveraging ConceptNet

[Speer17], a popular source for commonsense knowledge, which possesses a great breadth of

general knowledge that most people should already know. ConceptNet contains millions of

triplets in the form of (subject, predicate, object), where subject and object can be mapped to

visual objects from our system by looking up their labels. Thus, we look for each object within a

pair and extract the available relationship between them to refine the set of relationship

proposals between the two objects. Let the pair ("person", "crosswalk") as an example in Figure

, we can extract the node "cross the street".

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

14

Figure 2-6. A subgraph of ConceptNet showing the connection between nodes

Relation Prediction

In the final stage, we perform a predicate classification to predict the relationship between each

pair of objects. For this task, we first define a fixed set of relationships proposal, and then extend

it using the common-sense knowledge from the previous section. Then, we apply a zero-shot

predicate classification inspired by the work of Jiang and Taylor [Jiang23]. The focus of this work

is to create an informative hierarchical structure that can divide object and relationship

categories into disjoint super-categories in a systematic way. We divide predominant

relationships in scene graphs into four super-categories instead of three as in the paper. That is,

we collect the most frequent predicates and distribute them into "geometric", "possessive",

"semantic", and the last one "common sense" which includes the predicates obtained from the

ConceptNet. These categories can be explicitly utilized in the next steps. Table 3.4.2.1.1 shows

an example of the predefined set of predicates. Moreover, Jiang and Taylor also introduce a

Bayesian prediction head to jointly predict the super-category of relationships between a pair

of object instances, as well as the detailed relationship within that super-category

simultaneously, facilitating more informative predictions.

Table 3.4.2.1.1. An example of pre-defined set of predicates

GEOMETRIC above, and, at, behind, between, covering, in, in front of, near, on, on back of,
over, under

POSSESSIVE attached to, belonging to, carrying, has, of, part of

SEMANTIC across, against, along, covered in, eating, flying in, for, from, growing on,
hanging from, holding, laying on, looking at, lying on, made of, mounted on,
painted on, parked on, playing, riding, says, sitting on, standing on, to, using,
walking in, walking on, watching, wearing, wears, with

Together with extracting the explicit features 𝐸 and implicit features 𝐼 of objects in the image,

we also employ the MiDaS [Ranftl20] single-image depth estimation network to provide depth

maps 𝐷 for input images. The final image features I’=concat{E,I,D} serve as the inputs to the

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

15

predicate classifier. Consider each pair of objects, the predicate classifier yields four predicates,

one from each disjoint super-category, which maintains the exclusivity among predicates within

the same super-category. These predicates will be ranked to select the most confident one as

the predicted relationship for the current pair of objects. We also consider adding a coefficient

,e.g. a value between 0 and 1, to control the dominance of the common-sense relation

proposals. However, this step requires more carefully experiments to define the most optimize

value for 𝑤.

2.4.2.2 Scene Understanding in Smart Factory
The objective of the smart factory use case is for autonomous mobile robots (AMRs) and other

intelligent devices on the factory floor to detect typical objects in the manufacturing

environment, understand their context in relation to the other objects around them, and thus

operate more effectively in dynamically changing situations. By sharing knowledge of what they

perceive with other intelligent robots and edge devices in the swarm, they can build a mutual

understanding and context of their environment and better collaborate to achieve common

goals, sharing scene information so they can model things they cannot perceive directly through

their own sensors.

By understanding the scene in real-time the AMRs can navigate their environment, avoiding

dynamically moving obstacles, and take appropriate behavior given a certain scenario. For

example, if the AMR encounters an unexpected pallet blocking its way, it might inform the

operation’s staff of the obstacle and try to take another route. However, if the obstacle was a

person, it might stop and issue an audio alert to request the person to clear the path. Most

automated manufacturing environments are deterministic, that is products, material and

machinery are placed at known defined locations. Having a deterministic environment simplifies

manufacturing, but at the expense of flexibility and adaptability, two qualities that greatly aid

smart factories. For example, it may not be efficient for a mobile product rack to be positioned

exactly at the same position each time, therefore the AMR should be flexible enough to adjust

to the current location; likewise, people may inadvertently change the position of products,

which means the environment is no-longer deterministic, therefore the AMR should be

adaptable enough to deal with the product where it is, not where it should be. Even with limited

intelligence and scene understanding, the AMRs should be able to adapt to limited changes in

their environment.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

16

Figure 2-7. Sensors used in operational area

A wide variety of sensors may be used in the smart factory use case, as illustrated in Figure .

They range from ultrasonics and pressure bumpers to detect proximity to objects, to high-

definition optical cameras to detect product types, and 360° rotating LiDAR and IMUs for

generating SLAM maps; but the two most important sensors are MEMS LiDAR cameras and

stereoscopic depth cameras, as illustrated in Figure . Both types of sensors provide RGB images

and depth maps (range to a target) in a single sensor. The LiDAR uses a scanning laser to detect

range, whereas the stereoscopic camera uses stereo vision to triangulate key features in the

image. They differ primarily in the greater range of the LiDAR camera; however, the range of

stereoscopic cameras is improving year-on-year. Obtaining both types of data from the same

sensor ensures that the two data streams have the same frame of reference, although they do

have different resolutions.

Figure 2-8. MEMS LiDAR cameras (left) and stereoscopic depth cameras (right)

The proximity sensors are primarily used to detect objects at close range, and feed directly into

the AMR’s emergency stop system. The high-definition camera images are used to detect serial

and model numbers on the products, as well as other distinguishing features. These pieces of

information are used to identify the specific product, or at least its model type. The 360° rotating

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

17

LiDAR and IMU is used to generate SLAM maps as the AMR explores and navigates its way

around an unknown area, and most importantly, the AMRs location within it. The 360° rotating

LiDAR also helps to detect potential obstacles at greater range than proximity sensors, however

they can often be fooled by transparent surfaces, such as glass windows and doors.

Object detection and classification can be problematic, and identifying individual things, such as

a specific AMR, can be even more challenging. To aid with object identification QR codes will be

attached to some manufacturing equipment in prominent locations, as illustrated in Figure . The

identification QR code is unique to a thing and is stored as a property of the thing in the Thing

Description Directory (TDD). Therefore, if a QR code is associated with an object captured by the

cameras, its properties can easily be added to the semantic graph representing the scene,

greatly simplifying the identification process. Additionally, QR codes associated with calibration

chessboards will be mounted to the factory floor at several locations. The QR codes are at known

locations and poses are relative to the factory’s origin and axis. A ceiling mounted camera will

be able to see at least one floor mounted QR code in its field of view. Along with the chessboards

these codes can be used to calibrate the cameras and determine the relative position of other

objects in the scene. As with other objects in the scene, the floor mounted QR codes are stored

as things in the TDD.

Figure 2-9. Rack with QU identification code and floor mounted QR code and calibration chessboard

The SmartEdge project will investigate a number of techniques to perform scene understanding,

and the smart factory use case will demonstrate several of these techniques, including Semantic

SLAM and 3D Semantic Modelling.

Semantic SLAM [Manh22] enhances the established robotic navigation method known as SLAM

and is being developed by TUB, see section 5.4.1.2.2 for more details. This technique

traditionally employs sensors like LiDAR to gauge distances to objects and surfaces, including

walls and poles. The data, either as a 2D point line or 3D point cloud, helps a robot create an

internal map of its surroundings. This map enables the robot to navigate without colliding with

obstacles and to pinpoint its location, often utilizing landmarks and a Kalman filter. Although

SLAM identifies objects and surfaces, it doesn't understand what they are. Integrating camera

images with LiDAR data allows for object recognition. Identified objects are then linked with

semantic information from the TDD, like collision domains and mobility status. By applying this

process to various objects, the robot begins to attribute properties and behaviors, gaining a

more sophisticated understanding of its environment, hence 'Semantic SLAM.' This approach is

particularly beneficial in recognizing stationary objects, useful as fixed landmarks. Overall,

Semantic SLAM provides the robot with a deeper insight into its environment, the objects within

it, and their relationships.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

18

3D Semantic Modelling is similar to Semantic SLAM in that it models a physical environment and

understands the context of objects within it. However, unlike SLAM maps that are built up over

time as the robot moves around the environment, 3D Semantic Modelling is built

instantaneously using images and depth data from multiple sensor viewpoints at the same time,

allowing the scene to be seen in the round. Each sensor viewpoint classifies the objects in the

scene using object detectors and their surfaces using point clouds, which is represented as a

semantic graph. Several semantic graphs from different positions are then fused together to

infer a 3D semantic model of the environment, i.e., multiple surfaces are combined to construct

the probable 3D shape of each object along with its classification. This type of model is

particularly useful in dynamically changing environments, where the robot needs to modify its

behavior in real-time in response to other independent actors, and where the robot possesses

limited sensors or is unable to perceive specific areas of the environment. For example, a rack is

inadvertently pushed into the planned path of the robot.

Figure 2-10. Semantic sensor stream fusion pipeline

Figure illustrates the semantic sensor stream fusion pipeline that will be used for the smart

factory use case. Data streams from the image/depth sensors mounted on the ceiling will be

pre-processed and split into their component parts, i.e., RGB and depth. The depth scene

processing subtracts the background floor from the foreground objects, and so identifies

probable objects and their surface. This process is aided by the fact that the factory floor is flat

and uniform. Bounding boxes are added around each object identified. As with SLAM processing,

the surface of objects is identified, but not classified. The vision scene processing uses object

classifiers, such as Yolo, to classify probable objects in the scene. Again, bounding boxes are

added around each classified object. Both scene understanding processes output semantic

graphs in RDF format that represent some perception of the scene. Additionally, if the object

detected is a QR code, it is passed to a QR code reader, and added to the vision semantic graph.

The graphs are then fused using fuzzy logic, such as Intersection over Union (IoU)

[Rezatofighi19], to associate objects to classifications. If objects were not classified, such as the

pumpkin, they are given the class “unknown”.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

19

Figure 2-11. Semantic scene graph

The output of the semantic sensor stream fusion pipeline is a stream of semantic graphs, as

illustrated in Figure . The graph can also be augmented with thing properties from the Thing

Description Directory (TDD). The TDD is part of the Web of Things (WoF) standard [W3C24]

supported by the W3C, which seeks to extend the concepts of Internet of Things (IoT) by

providing a framework to define Things. SmartEdge defines Things as swarm nodes,

independent agents, and objects that exist in the use case environment, and stores their

properties, actions, and events in the TDD. For example, the weight of the robot and the

behavior that it can move. The TDD properties enrich the semantic graphs and provide additional

context for the detected objects. It is anticipated that the semantic stream processing pipeline

can be performed in IoT gateways located close to the sensors. So, what is generated is a

semantic stream of data describing the scene, and not the original raw images. This type of far

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

20

edge processing should help to reduce transmission bandwidth between swarm nodes, but this

needs to be validated by experimentation. Additionally, sub-images from the bounding boxes

may be linked to the semantic stream and transmitted with it. These sub-images may be useful

for subsequent processing and require less bandwidth, as discussed in [Bowden22].

Semantic scene graphs from multiple ceiling mounted sensors/IoT gateways are streamed and

combined in another swarm node with greater compute power. This node reconciles the

semantic scene graphs from multiple image/depth cameras into a single 3D semantic model of

the environment in a common frame of reference. This is a far more complex task as it uses

projective geometry to place the surfaces of an object, as seen from each camera, in three-

dimensional space. Based on the surface projections and the physical structural definitions of

the things from the TDD, the process estimates the probable location and pose of the object and

uses this to produce the 3D semantic model in RDF format. The physical structural definitions of

the things in the TDD can be thought of as a digital twin of a classified object. This is currently

an open area of research, but there are a number of promising techniques that will be

investigated, such as Normal Aligned Radial Feature (NARF).

Figure 2-12. Illustration of rack moving between operational areas (left) and a 2D occupancy map (right)

Once the 3D semantic model of the environment has been generated, it can be shared with

other nodes in the swarm, as they all have a common frame of reference, i.e., the same factory

origin and axis, and a common semantic vocabulary. The model can be used for a number of

different applications in the smart factory use case. For example, navigation of blind racks

between operational areas. In this example a 2D plan projection (as seen from above) of the 3D

semantic model is constructed to create a 2D occupancy grid, which can be used by the NAV2

component in ROS to navigate the autonomous mobile rack between operational areas, as

illustrated in Figure . As the model is updated in real-time, it can also be used to avoid

unexpected obstacles.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

21

2.4.2.3 Integrate Multi-modal Sensor Data Sources
In line with UC2, various sensors both static and moving are deployed in Helsinki. This section

outlines the requirements for developing an effective data fusion from these diverse data

sources, especially for implementation of UC2 smart traffic. Below we explain the multimodal

data inputs together with the expected output resulting from sensor fusion. Subsequently, UC2

will use and aggregate the sensor fusion outputs to calculate traffic indicators (queue length,

vehicle density, option zone metrics, etc.). For this reason, the fusion will enable a

comprehensive understanding of the environment, facilitating effective decision-making for

traffic control.

It is important to note that each individual road-user might be detected by multiple sources at

the same time, therefore the sensor fusion algorithm should consider this phenomenon. A

typical example is a tram or a connected vehicle that is publishing its GPS geolocation wirelessly,

also at the same time being detected by the road-side radar and camera.

A) Multimodal Inputs (coming from various sensing data sources):

Fixed Sensor sources (Fixed on roadside):

1. Radar:

o Occasionally noisy, limitations in detecting pedestrians and bikes.

o Detection frequency approximately 12 Hz.

2. Camera:

o Weather-dependent noise but capable of detecting pedestrians and bikes.

o Detection frequency varies (10 to 30 Hz).

3. Loop Detector:

o No object classification, but low latency and high reliability.

o Activates when an object passes over it

Moving Sensor sources (Mounted or Embedded in Vehicles):

1. Radar (distance to the front and back vehicle, narrow angle)

2. Camera.

3. Lidar (360 degrees, object detection).

4. GPS (reports geolocation)

a. GPS of V2X-enabled connected vehicles

b. GPS of Helsinki Region Transport (HSL) vehicles such as buses and trams

5. Inertial measurement unit (IMU) (can include acceleration, orientation, etc.)

6. Sensors connected to the CAN bus (status of tires traction, brakes, etc.)

B) Expected Outputs from the Fusion Process (Attributes of Interest):

The UC2 expects ideally the following outputs to be available from the sensor fusion process.

Note that this is an ideal list and not all following values may turn out useful depending on the

application.

For each Detected Moving Object (Road-users):

• Geolocation (latitude, longitude) of each unique vehicle.

• Speed

• Direction

• Acceleration

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

22

• Classification (Type) of road-users:

o Vehicle type (Pedestrian, Bike, Motorbike, Car, Van, Truck)

o Public Transport type (Tram, Bus, etc.): possible to match and fuse by combining

(a) HSL data, and (b) Radar data.

For each Detected Static Object (Road Infrastructure):

• Geometry (e.g. zebra line’s geometry).

• Geolocation

• Facing (angle)

• Classification (Type of object):

o Left/right borders of the road

o Stop line

o Traffic signs (STOP, Speed limit, etc.)

o Traffic light (Signals)

o Crosswalk (pedestrian zebra line)

o Lane separators

It should be noted that the vehicle on-board unit (OBU) can already fuse the following sensor

data to some extent depending on its computational and software capabilities. The OBU

integrates data from a set of vehicle-mounted sensors, including GPS and Accelerometer. The

resulting information, encompassing location, speed, heading angle, etc., is transmitted via V2X

communication to other vehicles and edge devices. For another set of vehicle sensors, consisting

of Lidar and Camera inputs, the OBU performs object detection for both moving and static

objects surrounding the vehicle. Regarding the surrounding moving objects, the OBU could

estimate their location, speed, direction, and additional attributes. This information is useful for

maintaining situational awareness. In the case of static objects, the OBU can perform object

detection for various elements, including road geometry, lane geometry, barriers, road limits,

traffic signs, and more.

We should also add here that the previous sections explain semantic scene understanding from

cameras observing road-user traffic, which is relevant to obtaining a semantically valuable

sensor fusion.

2.4.2.4 Media Stream Processing
The Media Stream Processing Pipeline in SmartEdge includes the software components required

to make media streams from capturing devices for the different Use Cases like 2D Cameras,

LiDAR Cameras, etc. from cars or robots available in the appropriate format for further

components like Data Fusion. The following aspects need to be considered after media data are

captured. Media refers mostly to video and image data:

- Video Codec: There are a variety of video codecs in the media industry with varying

encoding/decoding performance and compression rate. H264 is one of the video codecs

that is supported natively on nearly any device. H265 is a newer video codec which

outperforms H264 in terms of compression rate, but it requires more processing

resources for encoding and decoding. VP8, VP9 and AV1 are other free open codecs with

different encoding/decoding performance and compression rate. Due to its wide

support, it is recommended to use H264 as a common video codec to transmit the video

data between capturing device and the edge.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

23

- Video Bitrate: Encoded videos require different bitrates to achieve a certain quality

required by the different use cases. With video codec and a category of content known,

a smart encoding component predicts the required bitrate to achieve the required

quality using a given video codec. The smart encoding component utilizes ML techniques

to classify the captured content and predict the resolution and bitrate. Also, the

capturing device's processing capabilities can be considered too.

- Transmission Protocol: There are different transmission protocols for media streaming

relevant for different use cases depending on the requirements of the use case. HTTP

based streaming formats like DASH (Dynamic Adaptive Bitrate over HTTP) or HLS (HTTP

Live Streaming) are file-based (segment-based) media streaming protocols which are

designed to server video content over a content delivery network (CDN) to a large

audience with focus on scale. In optimal case, these protocols can achieve a latency of

3-5 seconds when used in combination with the Common Media Application Format

(CMAF), which allows chunked-based streaming. SmartEdge Use Cases require real-time

capability and therefore, the HTTP based protocols DASH and HLS are not suitable. The

Real-Time Streaming Protocol RTSP is better suitable to support SmartEdge use cases.

RTSP is supported natively by many CCTV and IP cameras but can be also installed as a

software component on the SmartEdge client/device platform, that convert the

encoded camera stream into RTSP format and transmit it over the network to the

streaming server running on the edge of the SmartEdge network. RTSP can be

configured to run on top of Transmission Control Protocol (TCP) and User Datagram

Protocol (UDP) depending on reliability and latency requirements.

In addition to RTSP, WebRTC is another protocol that can be used for real-time video

transmission.

The Media Stream Processing Pipeline is provided in the diagram below (Figure).

Figure 2-13. Media Stream Processing Pipeline

The main components of the Media Stream Processing pipeline are described below:

• Video Encoder: the video encoder receives raw video streams from capturing camera

devices e.g. LiDAR cameras insight a car, built-in cameras in robots or even from

standalone cameras. The video encoder then encodes the raw camera stream using a

preconfigured video codec and provides a compressed video stream as output. In

addition to video codec, resolution and bitrate need to be provided. The values of

bitrate and resolution will impact the quality of the video and the latency as well. The

Video
Encoder

Video
Packager

Streaming
Client

Netw
ork

Streaming
Server

Video
Decoder

Image
Extractor

Media
Sources

Consumer
Apps

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

24

Smart Encode component may be applied also to calculate required bitrate and

resolution depending on the quality of the capture content.

• Video Packager: the video packager is an optional component which is only required if

Adaptive Bitrate Streaming (ABR) is required. The video from first step needs in this case

to be encoded in different resolutions and bitrates for achieving different quality levels.

The encoded streams will be then split into small segments that are packaged via state-

of-the-art ABR formats like DASH or HLS. The length of the video segments has a great

impact on the latency.

• Streaming Client: The streaming client is responsible for preparing the video streams

for transmission over the network to the remote SmartEdge components for further

processing. The streaming client and the streaming server (described below) need to

use the same streaming protocol. In the case of DASH or HLS, the streaming client is just

a simple HTTP client that posts the video segment to the streaming server. In the case

of using other protocols like RTMP, RTSP or WebRTC, corresponding client and server

libraries implementing these protocols needs to be used.

• Streaming Server: The Streaming Server is the component deployed in the SmartEdge

System and can receive the media streams from client devices that act as media sources

via the Steaming client component. The Streaming Client and Streaming Server must

support a common transfer protocol like RTMP or RTSP and agree on using a common

video codec. Many streaming client/server solutions already support multiple streaming

protocols and video/audio codecs so that the applications can configure the most

appropriate protocol and video/audio codec for the current use case. It is important to

note that the Streaming Server component will serve streams from multiple source

devices and make them available for the next component in the pipeline. Since media

encoding/decoding/processing requires high processing resources, the media server

may distribute the decoding task on multiple SmartEdge nodes where processing

resources are available.

• Video Decoder/Image Extractor: the video decoder and image extractor component are

responsible for decoding image frames from a video stream and provide them in an

appropriate format to the next component in the pipeline. These components usually

consume images either in raw format (bitmap) or compressed format like JPEG or PNG.

2.4.3 Semantic Data Stream Fusion

2.4.3.1 Adopting FAIR principles
In SmartEdge we adopted the concept of FAIR data, i.e. ensuring findability, accessibility,

interoperability, and reusability of data.

To ensure the findability of data, use Uniform Resource Identifiers (URIs) to identify resources,

including images and their associated metadata. These URIs provide unique and persistent

identifiers for each resource, making it easy to find and access specific information, e.g. images

or sensor devices.

We implement the accessibility of data and metadata by using standardized communication

protocols and supporting the decoupling of metadata and data. Its publication practice makes it

easier for the targeted user groups to access and reuse relevant data and metadata. The data,

together with their metadata can be queried using standardized query languages, e.g. SPARQL

and its extension to streaming processing.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

25

To make our stream data interoperable across different datasets, we propose to use a unified

ontology to capture different data source in different modalities. And at the same time, we

maintain a mapping between this unified ontology with more specific ontologies in different use

cases and/or components. We plan to reuse Wikidata as much as possible and add new

terminologies, which are more specific to our project.

Since we utilize standardized data model and ontologies, the data can be reusable, firstly in

different use cases, and potentially, in different projects.

2.4.3.2 Semantic Data Streams and Declarative Mapping Rules

The designed architecture for multimodal stream fusion, presented in this section, may be

enhanced by leveraging Semantic Web technologies and the DataOps tool developed by WP3 in

SmartEdge and described in deliverable D3.1. We identify and describe three main

complementary aspects that support the designed solution for task 5.1 and can be leveraged in

the implementation:

i. semantic and declarative description of the data streams to be fused and accessed;

ii. declarative transformation of the output generated by the Vision Scene Understanding

component to the RDF output according to the target ontology;

iii. enrichment of the graph extracted from multimodal stream fusion with additional

information (e.g., contextual information) extracted from static data sources (e.g.,

datasets).

The first aspect refers to the semantic description through relevant ontologies of the data

streams available as input for the multimodal stream fusion solution. Different ontologies are

presented in the literature to this extent targeting the description of Web APIs and streams

[VanAssche21]. In particular, the W3C Web of Things1 recommendation can also be leveraged

to describe WebAPIs and streams implementing different protocols and security mechanisms.

The recommended set of properties can be easily extended to support additional metadata (e.g.,

from the DCAT vocabulary 2) to describe further the multimodal stream (e.g., encoding or

location of the sensor/camera generating the stream).

The description of input streams using a common semantic model enables a declarative

approach for their integration in the task 5.1 solution. The RDF description of the input stream

can be indeed used to: (i) query the streams and find the suitable ones to be consumed for a

specific task according to certain parameters, (ii) automatise the access and integration of data

streams based on the information provided (e.g., connecting to an API by simply specifying the

URL and the authorization mechanism to retrieve the data).

Figure shows an example RDF snippet describing a stream from a video camera using the W3C

Web of Things specification, additional properties from other vocabularies and example

properties that can support the implementation of the SmartEdge Schema designed in WP3. In

this snippet, we describe the security mechanism for accessing the stream, the endpoint and

the content type. Additional metadata about the location of the camera are provided using the

Basic Geo (WGS84 lat/long) Vocabulary3. The SmartEdge properties describe the identifier of the

node, the identifier of the swarm and the type of node. The RDF graph containing the description

1 https://www.w3.org/WoT
2 https://www.w3.org/TR/vocab-dcat-3/
3 https://www.w3.org/2003/01/geo/

https://www.w3.org/WoT
https://www.w3.org/TR/vocab-dcat-3/
https://www.w3.org/2003/01/geo/

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

26

of multiple multimodal streams can be queried to get information on specific streams, e.g., the

ones belonging to a certain stream and/or located in a specific location.

Figure 2-14: Example of stream description using W3C Web of Things concepts and additional metadata.

The second aspect refers to the definition of declarative mapping rules to convert the outputs

of the Vision Scene Understanding component to an interoperable RDF representation

according to target ontologies. Indeed, the components responsible for analysing the input

multimodal streams may generate a description of the current scene using heterogeneous and

possibly not semantic formats. For example, a machine learning algorithm for object detection

and classification may generate a JSON output classifying objects detected according to custom

categories of objects. The conversion of these outputs according to a common semantic, i.e.,

their representation in RDF according to a target ontology, can be fulfilled using the naïve

approach of a hardcoded script that processes the input to obtain the target output. However,

this approach is not maintainable and, in the literature presented in D3.1, the solutions based

on declarative mapping languages emerge as the best solution to address this need.

A pipeline, leveraging the DataOps tool implemented by WP3, can be implemented to support

the declarative conversion of heterogeneous outputs to RDF using a common reference

ontology. A set of declarative mapping rules is defined to configure the pipeline and the available

components are responsible for their optimised execution. The declarative description is

decoupled from its execution and thus more maintainable. Moreover, a DataOps pipeline can

support the integration of converted data obtained from different data sources in a single RDF

graph. A set of declarative mapping rules can also be used to explicitly define a DataOps pipeline

that converts data between diverse RDF representations, e.g., converting RDF data using a

different ontology to represent the same information.

Figure 2-15 provides an example of a JSON snippet representing the result of an object

detection algorithm that identified a person and a car from a frame of a camera video stream.

The conversion of such a input to RDF can leverage a DataOps pipeline to execute a set of

declarative mapping rules, e.g., defined using the RDF Mapping Language4 (RML), and obtain a

4 https://rml.io/specs/rml/

https://rml.io/specs/rml/

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

27

corresponding RDF output leveraging a target ontology. In the figure, we leverage schema.org

and GeoSPARQL vocabularies as an example and we refer to Wikidata entities for Person and

Car to associate a IRI to labels identified by the object detection algorithm.

Figure 2-15: Example of JSON input and RDF output for object detection.

The third and final aspect refers to the possibility of enriching the dynamic graph generated

from the processing at runtime of multimodal streams with information extracted from static

files, e.g., datasets. In this case, additional data sources are considered to improve the scene

understanding, e.g., by providing contextual information that can help the algorithms in

improving the accuracy. A DataOps pipeline can be defined also in this case to support the

conversion of certain data according to declarative mapping rules and targeting the same

reference ontologies adopted for the description of the scene.

This process can be implemented “online” by dynamically converting the needed information

through a pipeline or “offline”. In this second case, the static data are converted and stored in

an RDF graph (e.g., a triplestore) only once. A DataOps pipeline can be defined to query and

retrieve at runtime the required data, e.g., a parametric REST API can be implemented using

the DataOps tool and leveraged by the T5.1 solution during the processing of the streams.

Considering the example from Figure 2-15, additional information that can be used to enrich

the RDF graph may refer to the description of other nodes in the swarm (e.g., geometric

information), or to a list of objects that we know could be in the viewing angle of the camera

and may be used to improve the accuracy of the result obtained from the object detection

algorithm.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

28

3 SWARM ELASTICITY VIA EDGE-CLOUD INTERPLAY

3.1 OVERVIEW OF EDGE-CLOUD INTERPLAY

As part of decoupling application logic from the underlying platform, Task T5.2 focuses on

offloading part of the computations running in SmartEdge from edge nodes to potentially more

powerful nodes (e.g., specialized SmartEdge nodes benefitting from some acceleration

capabilities, or powerful nodes running in the Cloud) or better-connected nodes (e.g., central

nodes or switches). Specifically, the task develops mechanisms to elastically use resources and

offload specific stateful subqueries and AI operations from edge nodes to further nodes. To do

so, T5.2 is based on three technical pillars: i) a dedicated declarative data exchange language

and zero-copy networking protocol to exchange data with the best possible performance

between nodes; ii) a set of accelerated operators to dynamically offload portions of the

workload to specific accelerators or further nodes; and iii) a runtime to optimize some of the

offloaded operations. Each of these three technical pillars is described in more detail below.

First, one has to ensure that the data transfer between nodes is as efficient (in terms of latency

and CPU cycles) as possible, otherwise we run the risk of making the offload operation useless

or even detrimental to the overall performance of the system (in case of high data offloading

overheads). We leverage Remote Direct Memory Access (RMDA) in that context. RDMA is

introduced in more detail below, but in a nutshell allows to transfer data from the memory of

one node to another node in a high-throughput and low-latency way, by bypassing the operating

system and cache hierarchy of the involved nodes. It enables the network adaptors of the nodes

to transfer data from application memory directly to the wire and from the wire directly to

application memory, eliminating intermediary copies in between (zero-copy networking). RDMA

poses many problems in practice, however. In data intensive applications, it often results in

fragmented and smaller data transfers that are detrimental to the overall performance [RLF+22].

To remedy this, the first part of T5.2. develops dedicated Declarative-RDMA (D-RDMA) protocols

to speed up data transfer in SmartEdge; Instead of transmitting individual data fragments

through RDMA (which wastes CPU cycles and memory bandwidth), the application specifies in

a declarative, low-code language what data should be transmitted, letting the networking card

optimize the transfer by issuing larger DMAs. D-RDMA takes advantage of the networking layer

of SmartEdge and is implemented directly on top of it for a subset of nodes with powerful

networking capabilities. We plan to develop a declarative language to enhance two classes of

data transfers in the context of SmartEdge: transfers involving complex filtering operations, and

transfers involving LiDAR point-cloud operations.

The second part of T5.2 looks into specific portions of the SmartEdge workload to offload. As

implementing hardware-accelerated operators is both extremely time-consuming and intricate

(because one needs to use low-level programming languages and optimize operations for a

dedicated hardware architecture), we focus on a few use-cases representative of SmartEdge

including AI and data-intensive operations. Specifically, we design accelerated operators for an

intelligent road-side unit, as well as more generic accelerated solutions for graph and RDF

operations.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

29

The third and final part of T5.2 builds on the two points above to actually realize the offloading

operation in SmartEdge. To do so, we build a runtime that uses D-RDMA to transfer data very

efficiently between nodes, and then to optimize the runtime of the accelerated operations using

various optimization strategies (e.g., physical, logical, or hardware-specific optimizations).

The rest of this section is organized as follows: we start by reviewing the KPIs and requirements

related to this task below. We then present the relevant state of the art (in terms of modern

data exchange protocols and heterogeneous computing) in Section 3.3, before introducing our

detailed architecture and design in Section 3.4.

3.2 REQUIREMENTS AND KPIS

3.2.1 Requirements

This task is directly related to the following requirements:

SW-028

v1.1

To keep latency low the Cloud should not take on the role of swarm

coordinator or orchestrator. The Cloud should implement the SmartEdge

stack but may be restricted to only certain swarm protocols. There may

be challenges if the Cloud has too much control over the swarm.

 DELL UC-3 High 4, 5

Specifically, the T5.2 will ensure that the Cloud only takes an acceleration role in performance-

critical situations, while the management of operations (including the orchestration of the

offload itself) will be handled by SmartEdge nodes directly.

SC-009

v1.1
End to end latency of controller status data should be less than 100 ms.

 Aalto UC-2, UC-3 High 4

Latency is key for several of our use-cases. T5.2. will make sure to keep latency low (below

100ms) for a set of specific mission-critical operations by leveraging advanced data transfer

protocols and hardware acceleration.

SC-015

v1.1

A network protocol must exist to setup a data stream feed between

devices in a swarm. This may be achieved through a publish and

subscribe mechanism, or a streaming data protocol. For example, an

AMR may wish to constantly receive video images from several ceiling

cameras. There must also be a mechanism to stop the feed.

 DELL, IMC UC-3, UC-5 High

The first technical pillar of T5.1 directly answers this requirement, by enabling very low-latency

and high-bandwidth protocols between specific nodes.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

30

CSI-013

v1.1

A swarm smart-node must have the ability to correlate sensor data from

different sources on the same device in order to enhance the semantic

understanding of the environment being observed, e.g. it should be possible

to combine sensor streams from LiDAR, cameras, etc. in order to

semantically annotate objects and other features in an environment in the

smart-nodes internal knowledge graph, the LiDAR giving the physical

location of the object or feature and the camera facilitating the

classification based on the same frame of reference.

 DELL UC-3 High 3, 5

CSI-014

v1.1

The same requirement as CSI-013 by integrating sensor information

derived from other nodes in the swarm.

 DELL UC-3 High 3, 5

The second technical pillar of this task investigates hardware acceleration for specific mission-

critical operations. Specifically, we plan to develop toolchains to accelerate LiDAR data

processing as well as graph and RDF processing in a generic way for several use-cases.

3.2.2 KPIs

ID Descriptions Contribution of T5.2

K4.1 Ability to free developers from
specifying capabilities of hardware and
sensors at the design phase of stream
fusion pipelines with end-to-end latency
guarantee (e.g., 20-75% lower latency
to baselines [DTH+21, PET21]

Low-latency data exchange protocols and
hardware acceleration will directly
contribute to this KPI by enabling latency
guarantees.

K4.2 Ability to elastically scale 200-500%
better than the state of the art, e.g.,
[Cudre-Mauroux13, Duc21,
Schneider22].

Hardware offloading will directly

contribute to this KPI by enabling much

better elasticity and scalability.

K4.3 Can dynamically optimize resource to be
50%-150% better in terms of computing
resources and bandwidths;

Hardware offloading will directly
contribute to this KPI by freeing CPUs and
leveraging heterogeneous hardware
instead.

K4.4 Lower the effort in building swarm
intelligence with the target of reducing
the coding effort in comparison to
imperative programming paradigms by
80-90%, e.g., Python or C++, with
SMARTEDGE low-code tool chain.

All components in this task will be based

on declarative abstractions and hence will

reduce coding efforts significantly

3.3 PRELIMINARIES AND STATE OF THE ART

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

31

Before delving into the technical specifications of our contribution, we give below a quick

introduction to the technical foundations underpinning our work, in terms of i) data exchange

protocols ii) declarative data exchange and iii) heterogeneous computing.

3.3.1 An introduction to modern data exchange and its challenges

The discipline of programming networks and exchange data used to involve simple concepts.

Messages were exchanged through sockets, which invariably forced applications to use a

sequence of simple send-receive patterns to communicate. Message forwarding was completely

opaque to the application. Once a message was passed on to an initiating machine's send call, it

would simply resurface on the desired target machine's recv call. How the network was

structured between the initiating and target machines did not matter to the application.

Modern networks are very different. In the last decade, much has changed in networking to

enable data-centric systems and applications at the cloud scale. Modern networks are larger,

faster, more efficient, and offer (much) more services. Unsurprisingly, they bring many changes

in how they are programmed.

The two technologies that best exemplify these fundamental abstraction shifts are RDMA and

programmable network devices. The cloud industry has been using one or both of them for a

few years because, quite simply, cloud providers cannot afford to forgo technologies that are

efficient and deliver high performance. For edge computing, the story used to be different. In

the past, it was difficult to access these technologies, and the learning curve was discouraging.

Currently, these technologies are increasingly off-the-shelf, and a growing number of edge

nodes are now supporting those new paradigms. The risk for both researchers and practitioners

building innovative systems without these technologies is to find themselves behind systems

that do.

RDMA stands for Remote Direct Memory Access, and, as the name implies, blurs the bound-

aries among servers allowing, for instance, for a process to read the memory of a remote

machine. Programmable network devices allow applications to customize the way the network

hardware behaves. They allow, for instance, semantics-based routing, e.g., routing a request to

a server that is available rather than to a fixed destination address. Both technologies are key

enables in the context of this task and are introduced in more detail below.

3.3.1.1 An Introduction to RDMA
RDMA is gaining traction in data-intensive networks for all major cloud providers, enabling

efficient routing of massive application traffic at scale with low latency. Simultaneously, the

data-intensive market pivoted from on-premise to cloud-based solutions in recent years.

Consequently, we believe it is an opportune moment for edge computing to adopt RDMA for

constructing scalable and efficient systems.

RDMA allows a machine to directly access remote memory over the network without

interrupting the CPU on the remote system. Specialized RDMA-capable network interface cards

(RNICs) are used to perform the memory accesses on the remote side. Conversely, the same

technique is used on the sender to avoid unnecessary copies of data in the user-space into the

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

32

kernel-space. The sender essentially instructs the RNIC what memory needs to be sent, and the

RNIC's DMA engine copies the data and places it on the wire. This offloading is called zero-copy

transfer.

RDMA presents many advantages compared to traditional data transfer protocols. By bypassing

the CPU, RDMA significantly reduces data transfer latencies. It also enables faster data transfer

rates, which is beneficial for applications requiring high bandwidth such as SmartEdge. It reduces

CPU overheads, freeing up CPU cycles for other tasks, which might be especially attractive in IoT

and edge computing scenarios. Finally, RDMA supports zero-copy networking, where data is

transferred directly from the send buffer to the receive buffer without intermediate copies.

RDMA can operate over various network protocols, including:

• InfiniBand: A high-speed, low-latency networking technology commonly used in high-

performance computing (HPC) and enterprise data centers. InfiniBand is known for its

high throughput and low latency and is a standalone network technology that requires

specific adapters, switches, and cables, which might be doable in the context of

SmartEdge for some of the use-cases (e.g., UC3 or UC5) only.

• RDMA over Converged Ethernet (RoCE): This protocol allows RDMA communications to

run over Ethernet networks. RoCE maintains the low-latency and high-throughput

characteristics of RDMA while leveraging the widespread infrastructure of Ethernet.

There are two versions of RoCE: RoCE v1: Operates over standard Ethernet networks

but requires a lossless Ethernet fabric, which can be challenging to implement in a large-

scale or congested network. RoCE v2: Extends RoCE capabilities over Layer 3 networks,

allowing for routing and larger-scale deployments. RoCE might be the preferred solution

when using RDMA in SmartEdge between well-connected edge nodes and the cloud.

• Internet Wide Area RDMA Protocol (iWARP): iWARP enables RDMA over standard

TCP/IP networks, allowing it to work with existing Ethernet and IP infrastructures

without the need for a lossless network. iWARP is known for its ease of deployment in

existing network architectures but may not achieve the same low latency levels as

InfiniBand or RoCE. This might be the protocol of choice for high-throughput and low-

latency data exchange between edge nodes in SmartEdge.

As is clear from the descriptions above, each of these protocols has its own characteristics and

is suited for different network environments and requirements. In the context of SmartEdge,

the ultimate choice between them will depend on a number of factors such as existing network

infrastructure, the prospect of installing dedicated hardware on top of the current

infrastructure, performance requirements, and costs.

RDMA verbs are the core operations or commands used in RDMA to initiate and manage data

transfers between networked devices. They form the interface through which applications

interact with RDMA-capable hardware. The most important RDMA verbs in our context are

succinctly described below.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

33

• Send and Receive: These are the most basic operations. The send operation transmits a

message from a local memory buffer on one machine to a remote memory buffer on

another machine, where it is received. The receive operation is posted in advance by

the receiving side to specify the destination buffer for incoming messages.

• RDMA Write: This operation writes data directly from a local memory buffer on one

machine to a remote memory buffer on another machine without involving the remote

CPU. RDMA Write is typically used for one-sided communication, where the receiving

side does not need to post a corresponding receive operation.

• RDMA Read: Similar to RDMA Write, RDMA Read allows a machine to read data directly

from a remote memory buffer to a local memory buffer. Again, this operation is one-

sided and does not require the remote side to post a corresponding operation.

• Atomic Operations: RDMA also supports atomic operations, which ensure that a read-

modify-write sequence on a remote memory location is completed as a single,

indivisible operation. Common atomic operations include Compare and Swap (CAS) and

Fetch and Add (F&A). These operations are useful for implementing synchronization

mechanisms, such as locks or counters, across machines.

• Queue Pairs (QPs): While not a verb per se, Queue Pairs are a fundamental concept in

RDMA. A QP consists of a send queue and a receive queue. Verbs such as send, receive,

RDMA read, and RDMA write are issued through these QPs. Each QP is uniquely

identified and associated with a particular communication session between two

endpoints.

The use of those constructs allows for the efficient, low-latency transfer of data between

applications running on different nodes, making RDMA a key technology for applications

requiring high bandwidth and low latency such as SmartEdge. Understanding RDMA verbs and

concepts is technically complicated, however. In the context of low-code programming and

SmartEdge, we believe that a higher-level approach – for example based on declarative

programming constructs – should be preferred, which is precisely why we introduce Declarative

RDMA (D-RMDA) in Section 3.3.2 below.

3.3.1.2 An Introduction to Programmable Network Devices
Programmable network devices represent a significant evolution in the field of networking,

offering a level of flexibility and control that was previously difficult to achieve with traditional,

fixed-function network hardware. These devices, which include switches, routers, and network

interface cards (NICs), can be programmed to perform a wide range of functions and to adapt

to new protocols or custom processing requirements without the need for hardware changes.

Their programmability is crucial for supporting the dynamic, scalable, and efficient operation of

modern distributed applications such as SmartEdge. In addition, new networked processing

equipment (e.g., Programmable Network Processors and Data Processing Units) is emerging that

allows for the customization of their operations in the network.

Many of those devices can be programmed in P4 (Programming Protocol-independent Packet

Processors), a high-level language designed for programming packet processing operations. It

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

34

enables programmers to specify how devices process packets, including defining custom packet

headers and specifying the processing logic for packets as they traverse the network device.

The programmes that these new devices can implement are, however, limited. First, NICs and

switches are not general-purpose computers. Most adopt peculiar computing models, which

may or may not be able to express the computations worth unloading (for instance, most loops

and control flows are severely limited in P4, due to the feed forward and real-time constraints

of networking hardware). Second, this type of equipment has tremendous I/O power but is

limited regarding memory size and the length of programs they can support. Even with these

restrictions, several system areas can benefit.

Our focus in the context of this project will be on networked data processing, analytical

workloads, and Machine Learning workloads. For instance, assume an application where a

swarm of edge nodes process analytical queries in parallel. In terms of data processing, a

modern, programmable switch can be used to offload complex analytics operations on behalf of

the edge nodes through dedicated algorithms [Lerner2019]. By using the switch, we swap what

would have been a sophisticated distributed computation (e.g., complex aggregates on the

nodes) with a central, simpler one (aggregation on the switch). We say, in such cases, that the

network is accelerating the workloads.

Machine Learning has gained enormous importance and can, unsurprisingly, benefit from

network programmability as well. For instance, parameter aggregation plays a crucial role in the

training phases of Machine Learning workloads. During such time, the servers must

communicate to collectively update the parameters (coefficients) they are calculating in parallel.

The communication pattern in question would normally be all-to-all message exchanges, whose

quadratic factor creates severe scalability problems. This aggregation can be implemented to

use the network instead, implementing these so-called parameter servers for ML training on a

switch. We will discuss further ML acceleration use-cases below that can be leveraged in the

context of this project.

3.3.2 Declarative Data Exchange

As pointed out above, the DMA part of RDMA stands for Direct Memory Access. It refers to the

ability of a network card (among other devices) to read and write data from a host’s memory

without CPU assistance. RDMA’s performance depends on efficient DMAs in the initiating and

target hosts. In turn, a DMA’s cost is almost always proportional to the length of the data

transfer. The exception is small DMAs, which suffer from high overheads.

However, many data-intensive operations often generate small DMA operations when using

RDMA canonically. The reason is that the data they transmit is seldom contiguous by the time

transmissions occur. Modern data-intensive systems avoid this problem by copying data into

large transmission buffers and issuing RDMAs over these buffers instead. Doing this requires a

substantial amount of CPU cycles and memory bandwidth, which might not be possible on many

SmartEdge scenarios. To solve this issue and to provide a low code, effective data exchange

framework to SmartEdge, we extend below D-RDMA, a declarative version of RDMA that FRIB

recently proposed [Ryser22]. D-RDMA is declarative in that it specifies what data to transmit but

not the DMA schedule to do so. The approach leverages some accelerator (e.g., a smart NIC) to

group data fragments into larger DMAs and produce the same packet stream as regular RDMA.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

35

The problem we tackle through D-RDMA can be summarized as follows. RDMA can be very CPU

intensive if the data to transmit is scattered in many non-adjacent, small chunks. In that case,

the system has to point to each chunk by filling in some RDMA control data structures: for each

message, it has to create a Work Request (WR), and for each data chunk within that message, a

Scatter-Gather Element (SGE). If the chunks are relatively small, filling these control structures,

and transferring the small chunks which they refer to, can dominate the cost of an RDMA. Figure

Figure (left) depicts this scenario.

Figure 3-1: (left) standard RDMA forces the database to enqueue work requests for every fragment to be transmitted

(1). Once enqueued, the card gets notified that new commands are waiting through a mechanism called a doorbell

(2). The card proceeds by pulling the large commands from the submission queue (3). It then transfers one fragment

at a time, regardless of optimization opportunities (4). (right): Declarative RDMA (D-RDMA) compactly declares in a

low-code fashion the regions to transmit (1) and notifies the card the same way (2). The card pulls much shorter

commands from the queue (3). In turn, the card looks for fragment coalescing opportunities and performs much larger

DMAs should the opportunity arises (4, 5). The packets produced by the two approaches are identical.

Unfortunately, fragmentation, high-overheads and high-complexity are common issue when

using RDMA in data-intensive systems. To remedy this, we proposed an extension of RDMA,

called D-RDMA (for Declarative-RDMA) to both simplify and optimize the use of RDMA. The

original D-RDMA approach extends RDMA with control structures that point to larger regions

than a single message at a time and that contain both data and gaps. We call these structures

Non-Contiguous Regions (NCRs). The D-RDMA extensions encompasses (a) these new

structures, which are compatible with the verbs API, (b) new verbs that were missing from

standard RDMA, and (c) an initial runtime to support them.

The simplest and most important NCRs are called Strided Regions. The rationale for this is the

following: RDMA’s work requests can be seen as a rudimentary language that can only describe

contiguous regions. To make it more expressive, Strided Regions are a construct to capture

whole regions that present data and gaps in regular patterns. Strides Regions in particular, and

NCRs in general, are represented by data structures that replace the combination of WR and

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

36

SGEs with richer data descriptions. In other words, they are intended to be used instead of WR

on certain RDMA verbs to make RDMA both more declarative and more efficient. A Strided

Region can be defined using a base pointer, a period made of one or more elements, the width

of the elements, and a stride. The stride is described by a frequency, e.g., 1 every 2 elements,

and an optional start position, if different than the base address. Strided Regions are expressive

enough to handle many data transfers in SmartEdge and other data-intensive projects. Figure

gives a simple example of such a strided region.

Figure 3-2: Contiguous Regions are insufficient to capture complex data patterns. Non-Contiguous Regions, such as

Strided Regions, can be used to describe data and gaps in a compact way, declarative, and high-level manner and to

optimize RDMA.

A D-RDMA request containing NCRs is handled by a specific runtime on a node. Figure 3-3(a)

gives an overview of the workflow from a system’s point of view. First, the application sets up

the connections (queue pairs) to the remote hosts as it would in an RDMA scenario. It can then

use the verbs API to send transmission instructions to the card. Certain verbs would take Non-

Contiguous Regions (NCRs) to describe the requests. Upon receiving an NCR-based request, the

runtime in the node forwards it to an optimizer, which determines the fastest DMA schedule to

bring the data from the host. The runtime then executes this DMA schedule, and, as data arrives,

it assembles the payloads contained in the NCRs before forming and sending out the packets.

Internally, the runtime comprises five components, shown in Figure 3-3 (b). Two of these

components are similar to those we would encounter in a regular RDMA setting: the DMA Engine

is responsible for transferring data from the host’s memory into the network card’s; and the

Packetizer envelopes payload data with headers and trailers for the network protocol the card

is handling. The third component, the Segmented Memory, is also present in regular settings

but it is implemented slightly differently in D-RDMA: it considers smaller, independent memory

buffers, which are used by the DMA engine to write data in a stripped way. The remaining two

components, the Optimizer and the (Payload) Assembler, are extensions required to process D-

RDMA and a respectively responsible for deciding whether to transmit data chunks individually

or to regroup them, and to dynamically assemble the payload of each packet to be transmitted.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

37

Figure 3-3. The life of an operation in the D-RDMA runtime from a system’s perspective (a) and from a NIC’s perspective

(b). The application sets up a connection as usual (1). It uses declarative, Non-Contiguous Regions instead of SGEs to

post work to the card (2). The card determines a DMA schedule upon receiving the NCR list (3,3a,3b). The card issues

the DMAs (4). The card uses the row window for that request to find and packetize the data (5,5a,5b). We note that

the optimizer can be implemented in software (e.g., at the driver level) or in hardware.

As a result, D-RDMA can describe data transfer declaratively, and can operate the transfer much

closer to line speed, even for fragmented data and data-intensive scenarios such as those

presented in SmartEdge. We will revisit D-RDMA in Section 3.4.4 below, where we describe

specific D-RDMA extensions we have designed to handle advanced SmartEdge operations.

3.3.3 Heterogeneous, Low-Code Computing

In the end, the underlying vision behind task T5.2. is to combine recent advances in networking

and hardware platforms with high-level, declarative, and low-code constructs. We call this vision

heterogenous, low-code computing. The idea is to leverage a wide range of heterogeneous

computational platforms to run distributed workloads as efficiently as possible, leveraging CPUs

on various nodes but also programmable networking devices and hardware accelerators. To do

so, we systematically make use of declarative constructs and high-level programming to make

such workloads easier to deploy and to invoke. We describe the overall architecture we have

designed to make this vision a reality next in Section 3.4.

3.4 ARCHITECTURE AND DESIGN

3.4.1 General architecture

The general architecture for the work related to this task is described below. Mirroring the three

technical pillars introduced above, our architecture is decomposed into three main components:

1. Advanced networking components extending the general networking layer of

SmartEdge by leveraging next-generation data transfer powered by D-RDMA to

declaratively invoke high-performance data transfers between nodes

2. Accelerated operators – taking specific portions of the SmartEdge workload and

accelerating them in the cloud or using dedicated software accelerators

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

38

3. A runtime to; the role of the runtime will be to identify offloading opportunities based

on a declarative specification in the recipe of the functionality, and then to optimize the

offloading through a compilation process.

3.4.2 Integration with SmartEdge generic architecture

All three components directly fit in the general SmartEdge architecture:

1. The D-RDMA component runs on SmartEdge nodes that have RDMA capabilities

2. Accelerated operators run on specific nodes that either have higher P4 capabilities or

possess dedicated hardware acceleration capabilities (such as FPGAs)

3. The optimizer can run either on a specific node boasting superior connectivity and P4

capabilities, or directly on the orchestrator itself depending on its connectivity and

capabilities.

All components have been designed with low-code capabilities and they all feature higher-level,

declarative interfaces:

1. D-RDMA is by definition declarative; D-RDMA operations can be directly serialized in a

recipe and invoked in a declarative manner by a SmartEdge node

2. Accelerated operators will all be designed using declarative paradigms also (see

examples below in Section 3.4.6)

3. The optimizer will also be designed using a declarative paradigm; it will receive as input

a complex set of operations (e.g., a complex declarative query), which it will then

optimize and run using, again, declarative specifications on some accelerator.

3.4.3 Integration with Use-Cases

3.4.3.1 Integration with UC2
Our first focus for this task is for UC2, though we plan to design solutions that will be as generic

as possible and that will be useful for most use-cases. FRIB visited AALTO and CONVEQS in

Summer 2023 to understand both the specificities of the use-case and the hardware

acceleration that would be possible in that context.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

39

Figure 3-4: Some of the nodes and hardware devices available in Helsinki for UC2 on the road (a) and in instrumented

cars (b).

Both the equipment on the road (see Figure 3-4 a, which depicts road units deployed on road

pillars) and equipment in instrumented cars (see Figure 3-4 b) support multi-modal sensing

(including cameras, LiDARS, and GPS sensors) and could be include additional equipment for

hardware acceleration (e.g., in the form of low-powered Xiling FPGAs or P4 accelerators).

Figure 3-5: Integration of T5.2 with UC2; offloading will be powered by D-RDMA between edge nodes and further edge

nodes with specific accelerators; Cloud nodes could also be used in that context.

Figure 3-5 gives an overview of how T5.2 integrates with UC2. Offloading data will leverage D-

RDMA. In addition to fast data transfers, D-RDMA will be extended with filtering capabilities, in

order to efficiently identify and remove portions of the raw data that can be cut out prior to

transmission (called Declarative Filtering [DF] in Figure 3-5). In the context of UC2, license plate

numbers could for example be filtered out prior to transmission (for privacy reasons), or part of

a point cloud coming from a LiDAR installed on an instrumented car. See Section 3.4.4 for

technical details on Declarative Filtering. More powerful nodes, such as an intelligent Road Side

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

40

Unit (RSU) can then take over the computations using hardware acceleration (called Declarative

Processing [DP] in Figure 3-5). Advanced operations, such as point cloud alignment or vehicle

type inference could then be run on a hardware accelerator on the RSU. A dynamic optimizer,

running on a Coordinator or some powerful node in the swarm, optimizes the execution plans

of offloaded operations whenever possible. In addition, Cloud nodes could be used for some of

those operations whenever the swarm does not possess enough hardware resources to run the

task.

Finally, Oxford plans to contribute to this task by offloading the construction of an integrated

data structure (view) gathering information from several smart devices as Figure 3-6 depicts.

Figure 3-6: An integrated data view of various smart components for UC2

3.4.3.2 Integration with UC3
Use Case 3 (Collaborative Robotic Moves) aims to offer autonomous robots controlled with a

swarm intelligence system able to grant superior reliability, efficiency and security in a smart

factory scenario. Robots, in this scenario, aim to be autonomous in decision-making procedures

and will be able to interact with other robots and with human operators.

Human-device interaction must occur granting full respect of an individual’s privacy on top of

any other data analysis and exchange performed by the SmartEdge service. Image processing

necessary to grant privacy should not impair communication rate within the swarm intelligence

system.

To offer respect of privacy, any acquired image and/or video must be processed with proper

face-detection and blur algorithm before any further analysis or communication performed by

the swarm.

CNIT plans to contribute to this task by implementing a face blur detection and blur algorithm

using OpenCV-compatible libraries, aiming to make it run on the ARM processor core available

on the BlueField-2 DPU. The algorithm uses a YuNet detection model to perform the face

recognition task (see Section 3.4.6.1 for details).

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

41

3.4.4 D-RDMA extensions

As introduced in Section 3.3.1.1, RDMA and its declarative extension D-RDMA, are state-of-the-

art solutions to offload data to further nodes in SmartEdge. To accelerate the use-cases, we

designed two important extensions of D-RDMA:

1. Declarative filtering: the idea is to extend the relatively simple capabilities of D-RDMA,

namely Strided Regions (see above), to much more powerful online filtering operations.

In this context, we plan to extend the filtering capabilities of D-RDMA to multiple

dimensions. As a consequence, application developers will be able to declare what data

they want to transmit through RDMA, including advanced constructs to filter out some

of the data (e.g., by filtering out sensitive plate numbers on images for UC2, see Figure

3-7) on-the-fly while the transmission occurs. This functionality presents three key

advantages: i) it is declarative and easy to use ii) it can filter out sensitive information

on the sensing nodes directly without propagating this information any further and iii)

it is extremely efficient as the filtering out, and then the exchange of data will be

accelerated.

Figure 3-7: An example of a D-RDMA extension to accelerate filtering and exchange of data for UC2

2. Point Cloud operations: LiDARs are powerful and increasingly used edge devices that

generate loads or data (e.g., 600,000 points per second on a simple LiDAR in Single

Return Mode) in real-time. Raw LiDAR results of are often called point clouds, i.e., sets

of data points in a 3D coordinate system. Point clouds provide a wealth of information,

that is however difficult to handle at the edge due to its size, velocity, and complexity.

In this context, we plan to extend D-RDMA with point cloud primitives also. We plan to

support to key functionalities: i) filtering point-clouds through D-RDMA focusing on

regions of interest (e.g., some angle or region that is of particular interest for analyzing

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

42

car traffic at a junction for UC2) and ii) providing a basis for more advanced AI

applications by accelerating Kalman filters through D-RDMA and an FPGA.

3.4.5 CXL Extensions

The last piece of technology that we plan to leverage to accelerate the offloading operation in

the context of this task is CXL. Compute Express Link (CXL) is an open standard for high-speed,

high-capacity CPU-to-device and CPU-to-memory connections, designed for high performance

across components. CXL is built on the serial PCI Express (PCIe) physical interface and includes

PCIe-based block input/output protocol (CXL.io) and new cache-coherent protocols for

accessing system memory (CXL.cache) and device memory (CXL.mem). CXL allows systems to

maintain coherence between a host’s memory and memory from attached peripherals. Our use

of CXL in the context of SmartEdge will be more advanced though.

We designed an extension of CXL called CXL kernels [Lee24] to automate part of the offloading

operations in SmartEdge. The idea is to leverage advanced hardware operation to streamline

read/writes at the application layer. Nodes will be able to expose a Database Kernel (DBK) such

that read/writes against some specific memory range would trigger data-intensive

computations that the kernel would perform directly inside the device. The nodes will use

coherence traffic to monitor requests, prepare ahead of time, and ultimately answer data

requests more efficiently. We believe that CXL and Database Kernels can support a new

generation of heterogeneous data platforms with unprecedented efficiency, performance, and

functionality.

3.4.6 Offloading computations

Once D-RDMA has been activated to offload data to a further node, the remote node can start

taking over some computation. The whole idea behind Task 5.2 is to offload computation to

special nodes that are in some sense more powerful or better connected. In the context of this

project, we plan to focus on wide array of offloading operations. Beyond specific offloading

operations like those occurring on the Intelligent Road Side Unit leveraging FPGAs (see Section

5.3.3. in Deliverable D4.1), or face blurring operations on a DPU (see below), we plan to focus as

much as possible on generic offloading operators that can be useful for various use-cases. Since

we know that many devices in SmartEdge will have some P4 capabilities (see D2.2), we focus as

much as possible on advanced and generic P4 functionalities in the following.

3.4.6.1 Offloading Face Blurring on a DPU

As introduced above in Secition 3.4.3.2, CNIT contributes to this task by implementing a face

blur detection and blur algorithm using OpenCV-compatible libraries, aiming to make it run on

the ARM processor core available on the BlueField-2 DPU. The algorithm is based on

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

43

face_detect5 (https://github.com/opencv/opencv/blob/4.x/samples/dnn/face_detect.cpp) and

it uses a YuNet detection model to perform the face recognition task.

The YuNet detection model leverages on an open-source library for CNN-based face detection

in images. The CNN model has been converted to static variables in C source files. The source

code does not depend on any other libraries, and it may be compiled on any platform with C++

compiler.

The model is designed to be light-weight, fast and accurate, granting an accuracy between 0.77

and 0.89. It allows to recognize face of pixel between around 10x10 to 300x300 pixels due to the

training scheme and can perform on multiple faces in the same picture. Performances of the

CNN-based face detection method on intel CPU are reported online

(https://github.com/ShiqiYu/libfacedetection).

Preliminary performance results of the face blur algorithm have been tested using the perf tool

available on Linux, and results are reported below:

Performances for face_blur algorithm tested on an image

FSP 25.7

Time elapsed 0.0675 s

 #

Task-clock 364,47 5.40% CPU utilized

Context-switches 373 1.15 /sec

CPU-migrations 19 45.35 /sec

Page-faults 19210 46.09 /sec

Data in the table are median results of five consecutive tests. After detecting faces, the algorithm

blurs the detected faces, granting individual’s privacy before any other kind of image processing.

A sample image is reported below (see Figure 3-8) to provide an example of the algorithm

process:

Default image Image with detected faces Image with blurred faces

Figure 3-8: Sample results for the offloaded face blurring operation showing the original image (left), the image with

faces detected by the algorithm (center), and the resulting blurred image (right).

The algorithm has been tested on images and videos, and now is intended to be tested in a

communication scenario, powering the process and data exchange with RDMA-based

communication. Testing performances in terms of communication rate and data loss as well as

5 https://github.com/opencv/opencv/blob/4.x/samples/dnn/face_detect.cpp

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

44

memory consumption will represent an important step before the application on the swarm

intelligence system.

3.4.6.2 Offloading Data-Intensive Operators to Accelerators using P4
In data-intensive systems, operations take the form of trees of operators. Each of those

operators take as input a series of tuples, applies some operation (such as a selection,

projections, join, or advanced operator like some AI processing) on this input, and returns

transformed tuples as output. These operators can be parallelized on several (potentially many)

machines in networked or cloud setups, or can be accelerate using specific nodes.

The main accelerators we will look into in the following are programmable switches supporting

P4 operations (but note that the techniques we design below can take advantage of further P4

accelerators like DPUs or smart NICs). A programmable hardware switch is a platform unlike any

other. It is divided into two semi-independent units, a control plane and a data plane, as Figure

3-9 depicts. The control plane is responsible for management tasks, e.g., bringing switch ports

up or down. It usually consists of an x86 machine, an Intel Xeon in most cases, and it can run a

common Linux distribution. The control plane functionality is available through C and Python

libraries provided by the switch manufacturer.

The data plane is the component that receives packets from the network ports and forwards

them back to their destination ports. The forwarding decision is the result of a computation— a

networking protocol. In a programmable switch, the networking protocols are expressed as

programs. These switches come with SDKs that can compile such programs into binaries they

can run.

To explain how to program the data plane, we need to introduce a few concepts. The reason is

that the programming model the switch supports is quite unique. The data plane consists of

shared-nothing units called Match-Action Units (MAUs or, interchangeably, stages) arranged in

a pipeline. An MAU is for a switch what a core is for a general-purpose x86 CPU. MAUs, however,

have many constraints. Chief among them is that they can only send their results to the next

MAU in the pipeline and can only receive input from the previous one.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

45

Figure 3-9: (Top) The switch is composed of a control plane and a data plane. The data plane has a pipeline of Match-

Action Units (MAUs) with two types of storage: Match-Action Tables (MATs) and Registers (REGs). (Bottom) A MAT

can read and alter a packet by: (1) selecting the field(s) to match; (2) performing the match, e.g., via equality

comparison, and if an entry is found; (3) executing the matched entry's action, altering the packet's contents. A register

works similarly, although the access to registers is positional.

Each MAU can locally implement an abstraction called Match-Action Tables (MATs). A MAT is

where packet processing takes place. It can execute a function consisting of a lookup operation

(the match) against a locally stored table and the application of a side-effect (the action)

associated with the matched value. Figure shows how the operation works.

MATs can be programmed by deciding (a) which packet value(s) to use in the lookup operation,

(b) what calculation to perform as the action, and (c) where to store the result. For instance, a

switch must decrement the TTL (time-to-live) field of an IP packet while forwarding it. It can

recognize IP packets via the EtherType field. Therefore, the table would have an entry that would

match when the EtherType is 0x0800, i.e., an IP packet. When matched, the table would trigger

a TTL decrement. In Figure , MAT, 𝑥 would be 0x0800, 𝑦 would be TTL, and 𝑓 would be TTL − 1.

The TTL field would be overwritten with the new value in this example.

One important aspect of MATs is that their contents cannot be updated as part of an action.

However, another construct called a Register (REG) allows updates. For instance, Figure

(Bottom, Right) shows a register updating an entry using a value lifted from a packet and copying

the old entry’s value back into the packet.

A program on the switch consists of a sequence of match-action tables and registers

configurations. Such programs can be written using P4, which is an open standard, or using

proprietary languages such as Broadcom’s NPL, Huawei’s POF, or Xilinx’s PX. As already

mentioned, we focus on P4 in the following for its wide support.

The switch executes a program by moving each incoming packet through that program’s

MAU/REG pipeline, invoking all MATs and REGs along the way. Because packets can only move

into one direction—the next stage on the pipeline—this computing paradigm is sometimes

called feed-forward model.

One interesting property of commercial programmable switches is that they impose a strict

pipelining discipline, i.e., each MAU/REG takes the same amount of time with every packet. This

is possible because the P4 compiler can cap the actions’ length to a given maximum set of steps.

Programs with actions of longer durations simply fail to compile. This uniformity allows the

switch to move all packets traversing the switch to their respective next MAU/REG in lock-step.

In other words, forwarding a packet through a pipeline incurs latency but does not affect

bandwidth. If a series of packets arrive at the maximum bandwidth (called line rate), they will

be forwarded at the same rate. Therefore, the programs that compile successfully will handle

packets at network speed.

Dedicated processing can be added or modified in a programmable switch simply by describing

these protocols as a sequence of matches and actions. Researchers and developers quickly

realized that this computing model could express logic beyond networking, allowing them to use

the switch as an application platform. However, converting algorithms from general-purpose

machines to this computing model requires a paradigm change. The computations now have to

be described as side-effects of forwarding a packet.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

46

3.4.6.3 Offloading Graph-Based Operations
The first generic operation decided to offload was graph-based operations, most specifically

Graph Pattern Mining (GPM), which is an important class of graph analysis. It finds all subgraph

occurrences that match specific patterns. We decided to start with offloading GPM operations

for two reasons: i) because GPM operations are, we believe, a very good match with the (limited)

expressivity of P4 and hence were a great choice as a first offloading experiment and ii) because

GPM operations are prominent in many applications, including listing cliques, finding motifs, and

in mining frequent subgraphs.

A common approach to execute GPM algorithms is to iterate over all possible subgraphs and

check if they match the desired pattern. This is done using a two-step process. First, subgraph

enumeration extends subgraphs by adding one more node. This generates intermediate

candidate subgraphs. Second, pattern analysis examines these intermediate subgraphs and

looks for the pattern. Successful candidates are the ones that meet the pattern's matching

criteria. This approach is iterative; meaning that the successful subgraphs that passed the

pattern analysis are then extended again by adding one more node, and so on. The process ends

when no further subgraphs can be extended.

There are two techniques in the literature to guarantee that each subgraph result is generated

exactly once. First, techniques to discard the generated duplicate results. Second, there are

techniques to avoid enumerating duplicate subgraphs. This reduces the enumeration search

space in GPM problems. For example, converting the input graph to a Directed Acyclic Graph

has been widely adopted.

In typical graph analysis problems, the size of the input graph is problematic. However, the main

challenge in graph pattern mining is the explosion of intermediate results. The enumeration

process is typically computationally intensive. As discussed above, it involves enumerating all

candidate subgraphs and testing them for patterns. Even with a relatively small input graph, a

huge intermediate state is generated. Figure 3-10 illustrates this challenge. The figure shows the

number of results generated when executing the cliques listing task for sizes 3, 4, and 5 for three

datasets. The plots show the number of generated cliques as well as the number of generated

intermediate subgraphs. We see two main observations. First, the number of cliques and

subgraphs increases as the pattern size increases. Second, the number of generated subgraphs

is larger than the filtered out cliques results.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

47

Figure 3-10: Intermediate results generated from GPM computation on two well-known graphs

Another challenge in GPM tasks is the imbalanced workload that creates computational

bottlenecks. This is due to the heavily skewed degree distributions of real-world graphs. Only a

few nodes are highly connected while the majority of nodes have very few neighbors. As a result,

the majority of generated subgraphs contain these few high-degree nodes. For example, when

running the 5-cliques task on the Mico [Hussein23] dataset, we find that a few high-degree

nodes (0.1% of the graph nodes) are present in ∼50% of the generated subgraphs. If left

unhandled, resources responsible for processing the high degree nodes can become over

consumed. Therefore, achieving good resource utilization becomes a challenging task.

That is why we designed and implemented a framework to offload the whole GPM process, or

only the skewed, problematic portion of the problem, to a powerful P4 node. The overall idea

behind the offloading is illustrated in Figure 3-11 below. Numbers in white illustrate the process

from the edge nodes perspective: (1) a node syncs with the orchestrator (in this case running on

the control plane) and solicits some work. (2) The requesting node is assigned a fragment of the

problem, and (3) starts processing that fragment. (4) The resulting patterns are output by the

nodes. The workflow on the accelerator, in red, is somewhat similar, even though the individual

steps are performed differently: (1) the switch registers to the orchestrator to announce that it

can accelerate part of the process. (2) the switch accelerator is assigned specific graph fragments

(3) The nodes send the corresponding data (a subgraph) by D-RDMA to the accelerator (4) The

subgraph is handled on the P4-accelerated node and the desired patterns are emitted as results.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

48

Figure 3-11: Our offloading framework main workflow. The edge nodes and a P4 accelerator (in this case a powerful

and programmable P4 switch) operate independently but can offload GPM computations dynamically. In red, part of

the problem is offloaded to the powerful P4 accelerator: (1) Resources or the P4 switch’s data plane become available

and (2) the switch accelerator is assigned specific graph fragments (3) The nodes send the corresponding data (a

subgraph) by D-RDMA (4) The subgraph is handled on the P4-accelerated node and the desired patterns are emitted

as a result.

While conceptually simple, the whole process is actually technically complex, and was the

subject of full research paper presented at SIGMOD (the top venue for data-intensive systems)

in 2023 (see [Hussein23] for details). This complexity stems from two points: first, while we

picked a relatively simple task (GPM) to offload first, the programming model of P4 is limited

and reformulating GPM in a P4-compatible, feed-forward fashion was technically challenging.

Second, the P4 switch we used is actually very powerful, and optimizing the overall offloading

process to take full advantage of the accelerator was technically challenging. The results are

however extremely promising: we outperform the state of the art (Fractal [Dias2019]) by more

than an order of magnitude (i.e., more than 1000%) on average, as Figure 3-12 below illustrates.

Figure 3-12: Comparison of running GPM task entirely on nodes (servers) using a state-of-the-art framework (Fractal

[Dias2019]) versus offloading the workload to the switch using our framework called GraphINC.

3.4.7 Offloading Complex SmartEdge Operations Using SPARQL
Following the first generic offloading framework centered around GPM computation presented

above, we plan to focus our efforts on offloading a wide range of operations in SmartEdge

focusing on SPARQL. SPARQL is a very generic language, that is heavily used to describe

operations as the rest of this document showcases. Offloading SPARQL operations to P4-

accelerated devices could considerably accelerate the SmartEdge workload, but is technically

challenging since SPARQL is a full-fledged, expressive language with many different and

powerful operators.

Hence, we plan to focus on accelerating a subset of SPARQL in P4 in the rest of the project,

focusing on the following important operations for SmartEdge:

1. Conjunction and disjunction of triple patterns

2. Property paths using advanced path expressions supported by SPARQL 1.1 (e.g.,

AlternativePath or ZeroOrMorePath)

3. Complex aggregate operations supporting GroupBy and Having.

We plan to generalize the design that we took for our first offloading operation (illustrated in

Figure) for those three points. In terms of techniques, point 2. can hopefully be based on part

of our GPM framework (since both GPM operations and advanced path operations require to

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

49

explore parts of graphs in an iterative manner). For point 1., we plan to extend our initial,

previous work on offloading relational operators [Lerner2019]. We will need to design an

entirely new technical solution for point 3. The design and implementation of this offloading

solution will be a collaboration between FRIB and TUB taking place in 2024-2025.

3.4.8 Runtime Optimizer
Finally, we plan to build a component running on the SmartEdge orchestrator to optimize the

offloading process. The overall design of this runtime optimizer is given below in Figure 3-13.

Figure 3-13: The design of our runtime optimizer for offloading operations in SmartEdge; as all components from this

task, the optimizer will take a declarative specification of complex operations to offload (1), will translate this high-

level representation of the complex operation into some intermediate representation (2) that can be translated into

P4 and optimized before instantiating the optimized pipeline that needs to be run on a one or several accelerated

node.

As all other components designed in the context of this task, the optimizer uses high-level, low-

code declarative constructs as input, more specifically a declarative program describing the

complex operations to offload. The optimizer then translates this program into a Directed Acyclic

Graph of operations, that are then translated into some intermediate representation to be

optimized. The optimization process itself will leverage a system catalog containing set of rules

to rewrite and optimize the offloading operation into an efficient physical pipeline that can be

run on one or several P4-accelerated nodes (in a way similar to the optimization of complex

programs in data-intensive systems). The optimization process will span three different layers,

as illustrated in Figure 3-14: 1. physical optimizations (e.g., based on statistics to pick the most

efficient physical plan to run the complex offloading), 2. logical optimization (e.g., based on

logical rules on how to move various operators to obtain more efficient offloading plans) and 3.

hardware-specific optimizations (e.g., fusion of operators that can be jointly run in a common

P4 pipeline, for example fusing a join and a group-by operation).

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

50

Figure 3-14: the three layers of optimization that will be supported by our runtime optimizer.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

51

4 ADAPTIVE COORDINATION AND OPTIMIZATION MECHANISMS
This section delineates the ongoing work regarding the design and implementation of the

adaptive coordination and optimization mechanism for SmartEdge swarms, focusing specifically

on our progress in Task T5.3.

The content of this section is structured as follows:

• Section 4.1 presents the overview of Task T5.3, explaining how it interfaces with

components developed in other tasks.

• Section 4.2 summarizes the relevant requirements for Task T5.3, as defined by the use

case owner from WP2. This ensures that our developments align seamlessly with the

envisioned functionalities and goals.

• Section 4.3 presents the preliminary works that will serve as the foundation for realizing

Key Performance Indicators (KPIs).

• Section 4.4 delves into a detailed discussion on the architecture of the coordinator and

optimizer. These essential components, to be developed in Task T5.3, play a pivotal role

in achieving adaptive coordination and optimization within SmartEdge swarms.

4.1 OVERVIEW OF SWARM COORDINATION AND OPTIMIZATION
Task 5.3 aims to enable the autonomous coordination of a swarm at runtime and enhance its

ability to adapt to changes in its surrounding environment. The objective is to develop

mechanisms that enable adaptive coordination and optimization specifically tailored for

SmartEdge smart nodes within the SmartEdge swarm. This mechanism empowers the swarm to

self-manage and self-coordinate, enabling it to efficiently respond to varying environmental

conditions. By doing so, it ensures that the SmartEdge smart nodes can seamlessly adapt and

optimize their operations in real-time, thereby enhancing the overall performance and

responsiveness of the swarm in dynamic and evolving scenarios.

To establish its operational functionality, the development of T5.3 relies on the runtime

toolchain infrastructure established in task T5.4. During the initial phase, a compiler developed

within T5.4 to parse high-level application specifications to construct the processing pipeline.

This complex process involves systematically decomposing the application logic into a structured

set of tasks, each accompanied by its corresponding performance requirements. The processing

pipeline is conceptualized as a semantic program, meticulously implemented using CQELS-RL, as

detailed in Section 5.4.1. Concurrently, within this phase, the preparation of runtimes for

SmartEdge primitives (as outlined in Section 5.4.3), necessary for executing tasks in the

processing pipeline, is undertaken. Subsequently, these runtimes will be deployed onto

SmartEdge nodes when forming a swarm.

To deploy the application described in the semantic program, the implementation of T5.3

identifies SmartEdge nodes and specifies the SmartEdge primitives to be set up on each node. It

then orchestrates their integration into a cohesive swarm. Each node within this swarm is

meticulously equipped with the necessary capabilities, precisely aligning with the specific

demands outlined in the application specifications. This dynamic formation of nodes ensures the

successful execution of tasks in a distributed manner, leveraging the strengths of each node to

collectively achieve the high-level application objectives.

The autonomous coordination mechanism implemented within Task T5.3 also adapts the

swarm's operation to changes in the surrounding environment. For instance, it dynamically

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

52

reconfigures the execution plan when a node joins or exits the swarm. Furthermore, it may

request additional nodes to join and share the workload during periods of increased demand.

Additionally, Task T5.3 develops an adaptive optimization mechanism to empower SmartEdge

smart nodes in real-time execution adjustments, aligning with predefined optimization goals.

These goals encompass critical aspects such as energy consumption, bandwidth utilization,

latency, and computing resources. SmartEdge nodes utilize the optimizer to make intelligent

resource allocation decisions. This includes determining the most efficient use of computing

capabilities, deciding whether to execute tasks locally, distributing the workload among swarm

nodes, or even offloading parts of some tasks to the cloud (with the help of the mechanisms

described in the previous section in the context of Task 5.2).

Figure 4-1. Architectural overview of SmartEdge Orchestrator and Optimizer

Figure 4-1 provides an overview architecture of the components that enable the coordination

and optimization mechanisms within the SmartEdge swarm. In normal setup, a Swarm

Coordinator can have both an Orchestrator and an Optimizer like a DKG. At the core, an

Orchestrator is responsible for orchestrating collaborative actions of a set of SmartEdge smart

nodes. When a semantic program is received by a smart node, the Orchestrator decomposes

sub-tasks to construct a federated execution plan. This plan intricately links various data sources

to specific processing operators and determines where the resulting processed data should be

directed. Importantly, the Orchestrator possesses the intelligence to adapt dynamically to

changing circumstances. If a single smart edge node lacks the computational resources to handle

the entirety of a given task, the Orchestrator intelligently partitions the task into smaller

segments (whenever possible) and assigns them to other capable smart nodes within the swarm.

To assist the coordinator in locating data sources and other nodes, a Dynamic Knowledge Graph

(DKG) is paired with it. Functioning as a real-time repository, the DKG facilitates data source and

node discovery within the SmartEdge environment. By maintaining up-to-date information on

available smart nodes, including hardware specifications and resource availability, the DKG

empowers the Orchestrator to make informed decisions. Through semantic annotation, this

information is structured to enable precise matching of task requirements with individual node

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

53

capabilities. This fusion of dynamic coordination and intelligent resource allocation underpins

the operational efficiency of the SmartEdge swarm. The DKG can be centralized on a single smart

node or distributed across multiple smart nodes. For distributed DFG, we provide a detailed

description of the semantic-based discovery and formation in Section 4.3.2, alongside the

presentation of an initial version of such a distributed Knowledge Graph for edge devices.

The Optimizer continuously monitors smart node operations, available resources, and program

performance to assist the federator in fine-tuning the execution plan. For instance, it predicts if

a smart node is about to leave or become unavailable for its assigned swarm. By analyzing

factors such as coordination and vehicle speeds, it can anticipate when a car will depart a

junction and join the next, allowing the federator to prepare accordingly. Similarly, based on

current resource availability, such as battery level, the optimizer predicts if a node can no longer

fully participate in the federation, prompting the relocation of the running program to another

node.

Moreover, the optimizer learns performance metrics to optimize swarm efficiency. For instance,

if an object detection task on a Jetson device does not require real-time processing, it can

suggest transitioning the node to a low-power consumption mode to conserve energy.

Conversely, if a Jetson device cannot perform the task quickly enough, the optimizer can

distribute the task to other devices. Through continuous learning, the optimizer determines the

most effective topology for task distribution, ensuring optimal swarm performance. When a task

is offloaded to a special node with hardware acceleration, the optimizer calls the runtime

optimizer of T5.2 (see above) to optimize the hardware acceleration part of the operation.

Given the prevalence of streaming data in SmartEdge applications, Section 0 conducts an in-

depth exploration of the mechanisms involved in distributing semantic stream processing tasks

among participants. This analysis sheds light on how different network topologies influence the

performance of streaming systems, providing valuable insights for optimizing real-time data

processing in dynamic environments.

Furthermore, the performance of SmartEdge applications hinges significantly on the efficiency

of communication technologies. In Section 4.3.1, the focus shifts to examining the latency

implications of various implementations of the Data Distribution Service (DDS) protocol. As a

fundamental communication protocol used extensively in SmartEdge scenarios, understanding

the latency characteristics of different DDS implementations is crucial for ensuring timely and

reliable data exchange between devices in the SmartEdge ecosystem.

4.2 REQUIREMENTS
ID/Ver: SW-002/v1.1 Related Use Case(s): UC-1, UC-3, UC-5 Task: T5.3

A swarm smart-node is an autonomous entity that can actively participate in a swarm and must
be able to support its basic functionality. For example, the swarm smart-node must have the
processing environments to be able to host the SmartEdge swarm components.

T5.3 provides a discovery mechanism to find the proper smart nodes for specific tasks.

ID/Ver: SW-003/v1.1 Related Use Case(s): UC-2, UC-3, UC-5 Task: T5.3

A swarm coordinator is a swarm smart-node that must support the advanced functionality

necessary to form and maintain a swarm. For example, the ability to onboard or offboard nodes

to and from the swarm, or in UC5 the provide medical staff with such node that support

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

54

coordination, holistic management, and monitoring of a group of patients represented by their

swarm nodes.

T5.3 provides smart nodes with the ability to form and coordinate a swarm via a Federator.

ID/Ver: SW-004/v1.1 Related Use Case(s): UC-1, UC-2, UC-3, UC-4, UC-5 Task: T5.3

A manifest swarm must consist of one or more swarm smart-nodes and at least one of those

smart-nodes must be a swarm coordinator.

ID/Ver: SW-005/v1.1 Related Use Case(s): UC-3 Task: T5.3

A swarm should have three or more swarm coordinators to provide resilience if a swarm

controller is lost.

ID/Ver: SW-006/v1.1 Related Use Case(s): UC-3, UC-5 Task: T5.3

A swarm must have an odd number of swarm coordinators to prevent the “split brain” scenario.

T5.3 will ensure that during swarm formation, at least three smart-nodes will be discovered
and serve the swarm as the swarm coordinators.

ID/Ver: SW-007/v1.1 Related Use Case(s): UC-2, UC-3 Task: T5.3

The swarm coordinator(s) must maintain the state of the swarm. For example, which nodes are

part of the swarm.

T5.3 will ensure that the coordinator maintains a DKG, which can be implemented as an RDF
store storing the metadata of all the nodes serving the swarm.

ID/Ver: SW-008/v1.1 Related Use Case(s): UC-3 Task: T5.3

Swarm smart-nodes must reach a consensus on any action that affects the swarm. For example,

the swarm smart-nodes must agree on the offboarding of a new node from the swarm. If a

smart-node (A) requests to leave the swarm, but another smart-node (B) is relying on it to

perform some operation, then smart-node (B) must have the opportunity to request smart-

node (A) to remain in the swarm. There may be exceptions to this rule, e.g., if all swarm

coordinators agree to eject a node (C) from the swarm, then node (C) cannot block this action.

T5.3 will ensure such consensus, where the coordinator only agrees for a node to leave if a
replacement is found and joins the swarm.

ID/Ver: SW-009/v1.1 Related Use Case(s): UC-3 Task: T5.3

Any swarm smart-node can abstain on any action proposed by another swarm smart-node. This

may happen if the action does not directly affect the smart-node. Abstaining on proposed

actions is desirable, as it reduces the decision-making process and possible action contentions.

T5.3 implement a Task Validation component to check if an assigned task will be executed or
rejected. The decision will be based on task priority and resource consumption.

ID/Ver: SW-010/v1.1 Related Use Case(s): UC-3 Task: T5.3

The swarm must have a process to break any action contentions automatically between

swarm smart-nodes, even if this is a random decision. Otherwise, external intervention would

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

55

be required, which goes against the concept of a swarm. Taking random actions can be an

effective mechanism to break out of repetitive behaviour that continually fails.

The Task Validator developed in T5.3 will reject a task if it has the potential to cause action

contentions.

ID/Ver: SW-011/v1.2 Related Use Case(s): UC-3 Task: T5.3

A swarm smart-node (A) must have the right to leave a swarm if it chooses, but another swarm

swarm-node (B), can request it to remain if it needs the assistance of smart-node (A). Smart-

node (A) must then decide if it stays or leaves the swarm.

To avoid conflict with SW-008, a smart-node will be programmed to only decide to leave if
the coordinator finds a replacement or if it finds a replacement itself.

ID/Ver: SW-013/v1.1 Related Use Case(s): UC-3 Task: T5.3

A swarm coordinator should only belong to one swarm at a time.

T5.3 Task Validation will ensure that the coordinator does not process any tasks from other
swarms

ID/Ver: SW-021/v1.1 Related Use Case(s): UC-2 Task: T5.3

Swarm must always know what units; data sources and capabilities are available. This is similar

to SW-007, however, swarm unit might still be present just unable to operate at full capacity,

so this is a bit wider concept.

This requirement will be developed in the next deliverable.

ID/Ver: SW-024/v1.2 Related Use Case(s): UC-3, UC-4 Task: T5.3

The swarm Federated is the engine that executes a queries/DSL-based workload (e.g primitive

recipe) at runtime. It has to check that all capabilities required for the swarm functionality,

defined in a query, are available and can be executed.

The T5.3 Task Validation module will fulfill this requirement.

ID/Ver: SW-026/v1.1 Related Use Case(s): UC-3 Task: T5.3

In many cases the swarm coordinator and orchestrator are coresident on the same swarm

smart-node, but they can reside on different nodes.

T5.3 will enable the coordination and orchestration in any smart node. (Section 5.4.1)

ID/Ver: SC-002/v1.1 Related Use Case(s): UC-3 Task: T5.3

SmartEdge must provide a procedure so that a Swarm can communicate events about its state

to swarm participants that registered for certain swarm events.

Coordinators of the swarm will be allowed to update the state of the swarm to the DKG.

ID/Ver: SC-003/v1.1 Related Use Case(s): UC-3 Task: T5.3

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

56

It must be possible to register for application specific events that can be published by

SmartEdge applications. The events must support application specific data if the application

needs to communicate payload data.

ID/Ver: SC-004/v1.1 Related Use Case(s): UC-3 Task: T5.3

It must be possible to set a time to live window until when an event is valid. After that it is

considered outdated and can be removed.

ID/Ver: SC-005/v1.2 Related Use Case(s): UC-3 Task: T5.3

Events that are propagated by a swarm node should have a unique name space and ID so they

will not conflict with application specific events.

ID/Ver: SC-006/v1.1 Related Use Case(s): UC-3 Task: T5.3

Events should contain data about the creation source, time, and date.

ID/Ver: SC-007/v1.1 Related Use Case(s): UC-3 Task: T5.3

SmartEdge swarm events shall be only created by the swarm itself (and not by any application

that uses SmartEdge).

ID/Ver: SC-019/v1.2 Related Use Case(s): UC-3 Task: T5.3

There has to be sanity checking of data coming from the streams. In particular, in UC-2 the long-

term solution is to allow “outsiders” to send data from V2X capable vehicles, this has to be

checked. In UC-5 each sensor data shall be checked against unique sensor properties set during

the configuration by the authorised swarm admin.

ID/Ver: SC-022/v1.2 Related Use Case(s): UC-3 Task: T5.3

A protocol must be implemented for smart nodes in a swarm to exchange high-level semantic

information about their environment.

T5.3 will create an output handler to package output data into semantic messages, which will
include the above metadata.

ID/Ver: AL-001/v1.1 Related Use Case(s): UC-2, UC-3, UC-5 Task: T5.3

A swarm should be able to run more than one application at a time, providing they do not

directly compete.

A smart node can execute more than one task depending on its resource availability.

ID/Ver: AL-002/v1.1 Related Use Case(s): UC-2, UC-3, UC-5 Task: T5.3 & T5.4

Running an application should be coordinated by a designated swarm smart-node, called the

orchestrator, but it may enlist other swarm smart-nodes into performing the task described

by the application. For example, an AMR can only hold one product at a time, it needs to enlist

a mobile rack to hold multiple products of this type. As this is also the functional objective of

the mobile rack, there is no conflict of interest.

T5.3 enables the orchestration ability for smart nodes, and the Semantic Program model

allows such application logic to be understandable to smart nodes.

ID/Ver: AL-003/v1.1 Related Use Case(s): UC-2, UC-3, UC-5 Task: T5.3

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

57

Technically a swarm should have at least one running application to continue to exist. If the

swarm has no running application, it has no purpose and so should be dissolved by agreement

from its constituent swarm devices. In practice there may be a small time lag between the

swarm completing its last task and starting the next. If the swarm dissolved immediately it

might have to be reformed a little time later, which could incur an operational penalty. Instead,

the swarm should exhibit some level of “stickiness” for a time, i.e., the swarm may continue to

exist without an immediate purpose.

If no application is running on a swarm, T5.3 does not dismiss the swarm, but allows a node

to serve another swarm if requested.

ID/Ver: AL-004/v1.1 Related Use Case(s): UC-2, UC-3, UC-5 Task: T5.3

If an application orchestration smart-node fails or leaves the swarm in the middle of the

execution of an application, if possible, another smart-node in the swarm should take over as

orchestrator.

See SW-004, SW-005, SW-006 and SW-008

ID/Ver: AL-005/v1.1 Related Use Case(s): UC-2, UC-3, UC-5 Task: T5.3

A swarm device may refuse to cooperate with an application orchestration device if this

conflicts with a higher objective. For example, an AMR may enlist a mobile rack to take

another product, but the rack may refuse if the product is of the wrong type, or the rack is

full. In this case the AMR should recruit a new device (new rack) into the swarm so the task

can be fulfilled.

The Task Validator developed in T5.3 will reject a task if it has the potential to cause a

conflict with a higher objective.

ID/Ver: AL-006/v1.1 Related Use Case(s): UC-2, UC-3, UC-5 Task: T5.3

It may be possible to have more than one orchestrator running a different application in the

same swarm at the same time.

See AL-001.

ID/Ver: AL-007/v1.2 Related Use Case(s): UC-2, UC-3, UC-5 Task: T5.3

An orchestrator may have more than one task assigned at a time, but only one application task

should run at a time. Therefore, the orchestrator should implement a task queue. The

orchestrator will run the application task with the highest priority. If this application can’t run

because the prerequisites have not been met, then it runs the next highest priority application

task. For example, if the AMR can’t perform the highest priority task, to move a product from

the conveyer to a rack, because there are no more spaces in the rack; the AMR may take a

lower priority task to move the rack to its next processing stage and enlist into the swarm a

new empty rack.

The Task Validator developed in T5.3 will reject a task if the smart node is busy.

ID/Ver: AL-008/v1.2 Related Use Case(s): UC-2, UC-3, UC-5 Task: T5.3

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

58

A swarm device may orchestrate its own tasks, whilst collaborating with another orchestrator

on its tasks. A device should only participate in one task at a time, and so must put all tasks, its

own and other orchestrators, into a single task queue. This is particularly important for battery

powered AMRs, who’s highest priority task is to ensure they have sufficient power to complete

the current task and get to a recharging station. This is also a reason why swarm devices have

the right to leave a swarm.

The federation mechanism developed in T5.3 will fulfill this requirement.

ID/Ver: AL-009/v1.2 Related Use Case(s): UC-2, UC-3, UC-5 Task: T5.3

Where possible if a task cannot be completed or the application fails part way through, e.g.,

the path of an AMR is blocked by an unexpected obstacle, the orchestrator should try to

autonomously recover from the incident, e.g., replan an obstacle free path. If it can’t recover,

it should request manual intervention.

Coordinator should ensure a task is complete

ID/Ver: LC-004/v1.2 Related Use Case(s): UC-2, UC-3, UC-4 Task: T5.3

SmartEdge runtime should provide discovery functionality to discover available devices and

their capabilities.

T.53 will develop a SmartEdge node discovery supporting the Federator subsystem.

ID/Ver: LC-018/v1.1 Related Use Case(s): UC-2, UC-5 Task: 5.3

Capability for receiving control messages from nodes and relaying them to appropriate

participants. For example, we might have a process outside the SmartEdge connected to a node

and receiving data, analysing it and creating events.

T5.3 Will provide a message manager

ID/Ver: LC-023/v2.1 Related Use Case(s): UC-4 Task: 5.3

A mechanism that allows to forecast the Swarm state must be provided.

T5.3 implements a State Predictor to predict the state changes of a swarm.

ID/Ver: CSI-021/v1.1 Related Use Case(s): UC-1, UC-2, UC-5 Task: T5.3

Data provided by continuous semantic data streams must be filtered through IDM, policies, and

security requirements before the data is allowed to be used (e.g., by recipes) to prevent privacy

violations.

T5.3 will integrate the implementations of IDM into the Input Handler.

4.3 PRELIMINARIES AND STATE OF THE ART
An examination of the current state of the art in distributed systems highlights three pivotal

components in our context: DDS-based communication, P2P-based discovery and federations,

and continuous query federation.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

59

In DDS-based communication, our exploration delves into the intricacies of data transfer speed,

particularly when employing different settings within the DDS protocol. The focus is on

optimizing the efficiency and performance of SmartEdge swarms by comprehensively

understanding how variations in DDS protocol configurations impact the speed of data transfer.

P2P-based Discovery and Federations play a crucial role in fostering seamless communication

among edge devices. The coordinator manages information exchange and task synchronization,

promoting collaboration in a decentralized manner. This approach enhances efficiency and

responsiveness within the edge computing ecosystem, creating a foundation for effective

communication and coordination.

Continuous Query Federation introduces a dynamic dimension to exploration, focusing on real-

time adaptability and responsiveness. The coordinator continuously monitors the states of edge

devices, adapting coordination strategies to changing conditions. This dynamic approach

ensures that the swarm remains agile and can optimize its performance under evolving

circumstances, such as fluctuations in workload or environmental factors.

The coordinator's responsibility includes managing information flow, ensuring seamless

integration and effective collaboration between decentralized and centralized elements.

Additionally, the investigation emphasizes scalability and performance optimization as key

considerations, addressing the evolving needs and expanding capabilities of the edge computing

ecosystem. The preliminary and state-of-the-art exploration sets the stage for a comprehensive

understanding of these components and their implications in enhancing communication,

coordination, and overall performance in distributed systems.

4.3.1 Data Distribution Service -based Communication
As the first-generation software platform to develop robot applications, Robot Operating

System(ROS1) has offered an enormous ecosystem of control, sensor, and algorithmic packages

and provided utilities, such as introspecting communication, monitoring process, and

exchanging time-series transformation. ROS1 has been used for developing complex robot

applications from research groups to small-scale production companies. With the rise of

commercial production for real-time, secure, large scale and reliable robots, ROS1 failed to fulfill

several requirements. The lack of an inherited security mechanism, single point of failure due to

the master node failure, and inconsistent data delivery over lossy links like satellite or wifi make

it really difficult for the expanding robotics community to move forward with ROS1. The second-

generation Robot Operating System (ROS2) has been redesigned from scratch to mitigate all of

the previously mentioned challenges. ROS2 comes with a huge suite of required tools for robot

developers. To configure, introspect, visualize, simulate, log, launch, source management,

distribution, build process, and debug, ROS2 provides a command line tool and a graphical tool.

Data Distribution Service (DDS) is the middleware of the ROS2 ecosystem, and it is responsible

for communication among all the components, such as nodes, network API, and message parser

of ROS2.

The Data Distribution Service (D DS) standard specification introduced by the Object

Management Group (OMG) facilitates a publish/subscribe model with Quality of Service (QoS)

enabled for timely and dependable data propagation. Various transport configurations, safety

measures, scalability, resilience, security features, and fault tolerance capabilities of DDS

establish it as a suitable transport layer for distributed systems. It maintains a Data-Centric

Publish-Subscribe (DCPS) model. The DDS domain is identified with a domain ID, allowing

publishers and subscribers from the same or different applications to write or read data to or

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

60

from a topic using data writers or data readers with the same domain ID. The topic within DDS

binds the publisher and the subscriber within the Global Data Space (GDS), which includes an

inherent isolation mechanism. The QoS of DDS distinguishes the behavior of each message

regarding discovery and communication. All the publishers and subscribers within a domain are

known as domain participants.

Different vendor-specific DDS implementations have their specific way of establishing

communication for rapid scaling and integrating various nodes running in disparate domains or

geographically dispersed. These linking applications work as a bridge across the different

domains to establish a system-of-systems architecture. Each bridging service has its own

configuration, dependent libraries, and building process. There are different vendor-specific

DDS implementations available, and they vary from each other by configuration, build

requirement, packaging, and licensing but serve a common goal.

The following study aims to examine how increasing publisher frequency impacts the latency of

three common ROS data types (Binary, String, and IMU) when nodes are connected via both

wired and wireless communication, either within the same domain or across different domains.

It focuses on UC3 and explores the potential application of UC2 if DDS is deployed in vehicles or

RSUs. The experiment utilizes three types of machines acting as ROS2 nodes: Laptop computers,

Raspberry Pi 3, and Raspberry Pi 4, each configured with three different DDS vendors as specified

in Table 5.3.1 and utilizing both wired and wireless communication methods.

DDS Implementation Bridging Application Configuration

Eclipse Cyclone DDS Zenoh-plugin
Publisher and Subscriber both require to

have zenoh shared library

eProsima Fast-DDS Integration Service Configuration is done with the YAML file

RTI-Connext DDS Routing Service Configuration is done with XML file
Table 5.3.1 DDS implementations and Bridging applications.

4.3.1.1 Eclipse Cyclone DDS
Eclipse Cyclone DDS is one of the implementations of the OMG Data Distribution Service (DDS)

specifications and DDSI specifications for seamless interoperability. Compared to other

messaging solutions from Eclipse, Eclipse Cyclone DDS offers unparalleled data-sharing

capabilities paramount to effective communication. Moreover, its data models come with fine-

grained QoS properties, such as reliability, urgency, and persistence. These provide exceptional

functional and non-functional properties, particularly for real-time or IoT systems that are time

and mission/business critical.

Raspberry Pi3: In the graph shown in Figure 4-2, we can see how various frequencies used by

the publisher affect latency. When wirelessly connected nodes using Eclipse Cyclone-DDS

publish with different frequencies within the same domain, there is little difference in latency

until the file size reaches 145KB.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

61

Figure 4-2. Publisher frequency impact on the latency using Eclipse cyclone DDS same domain wireless

communication for Raspberry Pi3.

However, in Figure 4-3, when communicating across different domains, different frequencies

result in varying latency for different file sizes, with higher frequencies causing increased

latency for larger files. It is interesting to note that for both wirelessly connected nodes

(same/different domain), there is a sudden increase in latency when the file size reaches

502KB.

Figure 4-3. Publisher frequency impact on the latency using Eclipse cyclone DDS different domain wireless

communication for Raspberry Pi3

When the file size exceeds 145KB, both wired and wireless same domain nodes experience

similar latency increase characteristics. In same domain communication, the latency is higher

for a 502KB file size than for a 1MB file size. However, different domain communication shows

consistent latency characteristics across all file sizes in Figure 4-4; this is the opposite of

wirelessly connected different domain communication.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

62

Figure 4-4. Publisher frequency impact on the latency using Eclipse cyclone DDS different domain wired

communication for Raspberry Pi3.

Raspberry Pi4: The latency characteristics of Pi4 nodes wirelessly connected within the same

domain are similar to those of Pi3 nodes for various frequencies when dealing with files up to

145KB in size. However, for files of 502KB, there is a sharp increase in latency, and for most

frequencies, the latency drops when transferring with files of 1MB size. For the different

domains wirelessly connected Pi4 nodes in Figure 4-5, latency varies for different frequencies.

It is difficult to observe any pattern for the latency characteristics. Noticeably, for most

frequencies, the 1MB file yields lower latency than the 502KB file size, similar to the same

domain wireless communication.

Figure 4-5. Publisher frequency impact on the latency using Eclipse cyclone DDS different domain wireless

communication for Raspberry Pi4.

When connecting Pi4 nodes through wired connections within the same domain or across

different domains, we observed that the latency feature appears to be consistent. Additionally,

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

63

we discovered that the file size (up to 145KB) is not affected by different publisher frequencies.

Even with larger files (294KB and 502KB), different frequencies result in almost identical latency

for both same domain and different domain connections Figure 4-6.

Figure 4-6. Publisher frequency impact on the latency using Eclipse cyclone DDS different domain wired

communication for Raspberry Pi4.

Laptop Computer: When the same domain laptop nodes are connected wirelessly, all

frequencies have similar latency for files up to 2MB. However, for Pi3 and Pi4, the same behavior

is observed for files of size 145KB. A sudden increase in latency occurs when files reach 4MB at

all frequencies. It is worth noting that the lowest publisher frequency, 1Hz, has the lowest

latency for the largest file size for wirelessly connected laptop nodes of the same domain. When

laptops from different domains are connected wirelessly, the different publisher frequencies

have different latency characteristics for the same file size (see Figure 4-7). This is similar to the

behavior observed in wireless communication between Pi3 and Pi4 devices from different

domains. The graph demonstrates that lower frequencies have lower latency, even when

transmitting larger files.

Figure 4-7. Publisher frequency impact on the latency using Eclipse cyclone DDS different domain wireless

communication between laptop computers

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

64

4.3.1.2 eProsima DDS
The RTPS (Real Time Publish Subscribe Protocol) is a communication protocol that enables

reliable pub-sub (publish-subscribe) communication over unreliable transports like UDP. It

works for both unicast and multicast communication.

The OMG (Object Management Group) has standardized RTPS as the interoperability protocol

for DDS implementations. It is a widely used standard for real-time applications in the aerospace

and defense sectors. In addition to the RTPS implementations included in DDS implementations,

independent, lightweight RTPS implementations are also available. The most prominent of these

is eProsima Fast RTPS, which boasts excellent performance, features, and compliance with the

most up-to-date RTPS standard, which is also known as eProsima DDS.

Raspberry Pi3: When Pi3 nodes are connected wirelessly within the same domain using

eProsima DDS, they exhibit consistent latency for all frequencies, except for 1Hz when the file

size is up to 294KB. However, when the file size is 502KB, there is a sudden increase in latency.

For the 1Hz publisher frequency, the highest latency occurs for 294KB files, which is not typical

of the other experiments. When the file size is 502KB, the 12Hz and 15Hz frequencies exhibit

higher latency than the 1MB file. Latency decreases for all publisher frequencies once the file

size reaches 1MB.

Our findings indicate that when Pi3 nodes are linked via wireless communication across various

domains and use eProsima DDS to communicate, it results in a consistent latency effect across

all frequencies and file sizes, except for the 1Hz publisher frequency, which affects 294KB,

502KB, and 1MB file sizes differently in Figure 4-8. This is an unexpected finding. To illustrate

the overlapping lines, we have included a zoomed-in version of the latency diagram for 87KB

and 67KB.

Figure 4-8. Publisher frequency impact on the latency using eProsima DDS different domain wireless communication

between Pi3

Raspberry Pi4: Pi4 nodes that are connected wirelessly within the same domain and utilize

eProsima DDS exhibit similar latency behavior as Eclipse Cyclone DDS at various frequencies.

Latency remains consistent across all frequencies up to a file size of 145KB, but increases as file

size increases, which is expected. Similar to Eclipse Cyclone DDS and RTI Connext DDS, eProsima

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

65

DDS results in the highest latency for 502KB files on Pi4 in Figure 4-9. Similar to Pi3 RTI Connext

Pi3 wired experiments in different domains and eProsima DDS Pi3 wired both the same and

different domain, we noticed a significant increase in latency when the file size changed from

145KB to 294KB.

Figure 4-9. Publisher frequency impact on the latency using eProsima DDS different domain wireless communication

between Pi4.

Laptop Computer: When laptops are connected wirelessly within the same domain and using

eProsima DDS, we observed different latency characteristics for file sizes of 145KB, 1MB, 2MB,

and 4MB across all publisher frequencies. It is interesting to note that for lower frequencies like

1Hz and 2Hz, we noticed higher latency for 145KB files, and similar behavior is observed for 1MB

files at 4Hz, 8Hz, 10Hz, and 12Hz frequencies. Additionally, the 4MB file size had the poorest

performance at 20Hz and 100Hz frequencies.

Figure 4-10. Publisher frequency impact on the latency using eProsima DDS different domain wired communication

between Laptop.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

66

Based on our observations, we have discovered that when using eProsima DDS to communicate

between laptop nodes in different domains through a wired connection, there is minimal latency

difference for most frequencies (except for 1Hz) when dealing with file sizes up to 87KB.

However, we have noticed an increase in latency for files up to 502KB, followed by a decrease

for files of 1MB in Figure 4-10. It is worth noting that we have seen a significant rise in latency

when the file size changes from 2MB to 4MB.

4.3.1.3 RTI Connext DDS
RTI is one of the leading providers of software frameworks for smart machines and real-world

systems, and their flagship product, RTI Connext, is the ultimate solution for seamless and secure

information exchange between multiple applications, ensuring a unified and efficient system.

Connext is built on the foundation of the DDS standard, providing a reliable and low-latency

availability that is absolutely essential for real-time systems to operate without any

interruptions. Furthermore, with Connext, development, integration, and maintenance costs

significantly decrease. The data awareness capability of the framework boosts the data flow

optimization to find the appropriate connection and desired performance.

Connext DDS provides the data filtering capability, optimizing bandwidth usage in a complex

system and ensuring that only relevant data is delivered to each application. Connext's peer-to-

peer architecture eliminates the need for brokers or servers, allowing for efficient message

transfer between publishers and subscribers with low overhead. The platform handles the

broker's routing, discovery and naming functionality in a distributed, lightweight, and reliable

manner. Thus there is no requirement for specialized hardware or server software.

Raspberry Pi3: When transferring binary data wirelessly between Pi3 same domain nodes using

RTI Connext DDS, we noticed that the latency pattern is similar to that of Eclipse Cyclone DDS.

We found that up to a file size of 145KB, the different frequencies do not affect latency.

However, when transferring a 502KB file, we observed higher latency compared to a 1MB file.

Additionally, we found that lower frequencies, such as 1Hz or 2Hz, produced higher latency for

larger files, while medium frequencies like 8Hz and 10Hz performed better than higher

frequencies, which was different from other DDS implementations.

While transferring binary data between wirelessly connected Pi3 different domain nodes using

RTI Connext DDS, in Figure 4-11 we observed that different frequencies for smaller file sizes

similarly impact the latency. Here also 502KB file yields higher latency than the 1MB file.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

67

Figure 4-11. Publisher frequency impact on the latency using RTI Connext DDS different domain wireless

communication between Pi3.

We have observed that when using RTI Connext DDS with a wired connection, same domain Pi3

nodes, there is little difference in latency between 502KB and 1MB file sizes at lower frequencies

of 1Hz and 2Hz. However, when communicating between wired nodes in different domains, we

have found that the latency is higher for 502KB files compared to 1MB binary files in Figure 4-12,

as seen in the case of Eclipse Cyclone DDS. It is also important to note that there is a significant

increase in latency when the file size increases from 145KB to 294KB for all of the publisher

frequencies.

Figure 4-12. Publisher frequency impact on the latency using RTI Connext DDS different domain wired

communication between Pi3

Raspberry Pi4: When using RTI Connext DDS to transfer binary data wirelessly between nodes in

the same domain, we have discovered that for files larger than 145KB, the frequency used has

a direct effect on latency. Lower frequencies are more efficient for transferring larger files.

However, when transferring data wirelessly between different domain Pi4 nodes using RTI

Connext DDS, we have found that all frequencies except for 20Hz and 15Hz have the same

impact on latency for different file sizes in Figure 4-13. This is different from the results obtained

when transferring data wirelessly between the same domain Raspberry Pi3 and laptop nodes.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

68

Figure 4-13. Publisher frequency impact on the latency using RTI Connext DDS different domain wireless

communication between Pi4

When comparing wired connected Pi4 nodes on the same domain and using RTI Connext DDS,

the latency pattern remains consistent for file sizes up to 145KB. However, it is interesting to

note that a 294KB file has higher latency compared to a 502KB and 1MB file size for most

frequencies. Additionally, lower frequencies perform better for larger files in this experiment. In

our observation of communication between Pi4 wired nodes in different domains, we noticed

that sending a 294KB file results in higher latency compared to a 502KB file. However, when it

comes to higher frequencies such as 12Hz, 15Hz, 20Hz, and 100Hz, a 4MB file has lower latency

than a 2MB file. Additionally, a lower frequency also shows better performance for larger file

sizes in this experiment.

Laptop Computer: Laptop nodes within the same domain that are wirelessly connected and

using RTI Connext DDS exhibit unexpected behavior when transferring small files. Interestingly,

frequencies like 8Hz and 10Hz experience higher latency when transferring a 33kb file than a

4MB file in Figure 4-14. However, when transferring a 145KB file, all frequencies (except for 4Hz)

result in higher latency. The latency improves and behaves consistently when transferring larger

files beyond 145KB.

Figure 4-14. Publisher frequency impact on the latency using RTI Connext DDS same domain wireless communication

between Laptop

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

69

When communicating between laptop nodes that are wirelessly connected and reside in

different domains, we have noticed that most frequencies have a similar impact on different file

sizes. As file size increases, latency also increases until it reaches a 502KB file size, after which it

drops slightly for 1MB files figure. Interestingly, we found that the latency for 294KB and 2MB

files is almost the same. Lower frequencies like 1Hz, 2Hz, and 4Hz perform better for larger file

sizes.

Observations and Analysese:

For most of the experiments, we have noticed the impact of publisher frequency on latency. For

wirelessly connected Raspberry Pi3 nodes while using eProsima DDS, we observed that nearly

all the publisher frequencies have the same resultant latency for all file sizes; this phenomenon

was quite unexpected. For all the DDS implementations, regardless of publisher frequencies and

domain communication, most of the use cases 502KB binary files yield more latency than 1MB

binary files. With RTI Connext DDS wired Pi4 nodes for higher publisher frequencies, the latency

of 4MB files is smaller than the 2MB files. Up to file size 145KB for the binary files eProsima DDS,

Eclipse Cyclone DDS and some instances of RTI Connext DDS have shown similar latency

characteristics regardless of publisher frequencies. However, wirelessly connected laptop nodes

using RTI Connext DDS have different latency characteristics for different publisher frequencies

for smaller file sizes up to 145KB. A sudden rise in latency has been observed for all the DDS

implementations while the binary file size changes from 145KB to 294KB. While transferring

larger files, in most cases, lower frequencies have better latency. However, for wired connected

Pi4 nodes using eProsima DDS, we observed that 1Hz and 2Hz publisher frequencies performed

worst for the large files.

Varying results were exhibited by different DDS systems when comparing communication

performance across different domains and within the same domain for various file types and

sizes. For wirelessly connected Pi3 nodes, Eclipse Cyclone DDS with smaller binary files and lower

publisher frequencies, the same domain communication performs better, but the situation

changes as the file size reaches 294KB; different domain communication behaves better.

Different domain communication performs better when the binary file exchange happens

between the wirelessly connected laptop nodes using Eclipse Cyclone DDS for all file sizes and

publisher frequencies. Nevertheless, with wired connectivity, the same domain communication

for all physical devices using Eclipse Cyclone DDS performs better than different domain

communication. When the different physical nodes use eProsima DDS to exchange binary data

regardless of the binary file sizes, publisher frequencies, and communication medium, the same

domain communication consistently outperforms the different domain communication.

When wirelessly connected Pi3 nodes use RTI Connext DDS for the smaller binary file, both the

same domain and different domain show similar latency characteristics, but when the file size

becomes 145KB different domain outperforms the same domain communication for all

publisher frequencies. On the wirelessly connected Pi4 node for larger files with lower

frequencies 2Hz same domain communication yields lower latency, but with 8Hz frequency for

the same file sizes, different domain communication outperforms the same domain

communication. Different domain communication works better for all publisher frequencies and

file sizes for the wired connected laptop nodes using RTI Connext DDS.

From the above discussion, we observe that there is no rule of thumb for vendor-specific DDS

implementation performance. The performance of DDS implementation depends on the

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

70

exchanged file type, communication media type, and file size. Different domain communication

performed better for the larger binary file exchange in some cases.

4.3.2 P2P-based Discovery and Federation
This work focuses on storing and querying RDF data obtained from distributed sources across a

network of dynamic swarm intelligence nodes that are represented by a network of edge devices

in a fully distributed fashion. By employing a solution to integrating both the structured P2P

system, P-Grid [Aberer01], and an edge-based RDF storage, RDF4Led [Anh18], this new design

enables maintaining RDF data storage among distributed swarm nodes and query processing

across swarm nodes while scaling with increasing data and network size.

4.3.2.1 System Architecture and Implementation
The implementation integrates the RDF4Led engine and P-Grid system to create a distributed

RDF store for a P2P network of lightweight edge devices. It utilizes the flash-friendly RDF storage

of RDF4Led and the P-Grid virtual binary search tree to efficiently manage and query RDF data

on each node in the network. The Figure 4-15 below illustrates the architecture overview of

integrating the RDF4Led and P-Grid components on a single swarm intelligence node.

Figure 4-15. Architecture Overview of P-Grid and RDF4Led’s Integration

The critical components of the design to be extended are the RDF storage and SPARQL query

processor of RDF4Led, and the State Management and Lookup Service of P-Grid. Here, the blue

part represents the original architecture of RDF4Led consisting of an Input Handler that is tied

to a Dictionary to translate between string-based RDF resources and encoded identifiers.

Dictionary adopts a hash function to create a fixed-length integer deterministically as a

representation of an original string of arbitrary length. Because of its natural behavior, the hash

function is suitable for key-value structures. The encoded RDF triples are indexed with three

index layouts (SPO, POS, OSP) and are stored with a Storage Manager that employs a two-layer

index for each layout as presented in Rdf4led.

SPARQL queries are registered on the system via a Query Handler and are compiled with a Query

Compiler. For compiling a SPARQL query, the Dictionary will involve converting RDF nodes in

basic graph patterns to encoded identifiers. A Query Executor is implemented to execute the

query plans computed by the Query Compiler and to produce the output results. The Output

Handler returns the original format of RDF resources for these output results from the Query

Executor.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

71

The red part encompasses essential functions adopted from P-Grid. The State Manager from P-

Grid serves as a controller for a peer, facilitating state transitions based on given inputs. It

includes primary states, such as the bootstrapping phase, exchange phase, replicating phase,

and running phase.

The bootstrapping phase initiates when a swarm node/peer joins the P2P network, aiming to

discover and familiarize itself with other participants. Subsequently, during the exchange phase,

existing peers in the P-Grid overlay structure undergo stabilization, but data distribution might

remain imbalanced. To address this, the exchange phase reorganizes data items among RDF

peers.

A static approach with a global replication factor of two ensures that each data item has two

replicas in the P2P network. During the exchange phase, only data blocks are replicated, with

each replica recording the origin peer containing the actual RDF triples within the block. Origin

peers halt initiating replicating requests until their data blocks meet the global replication

requirement.

Once the exchange phase is complete, the running phase commences, making a peer ready to

work. Peers in this phase can both initiate query requests and respond to queries from other

peers in the P-Grid network.

Throughout each phase, the State Manager communicates through a Communication Handler,

facilitating message exchange. The Lookup Service triggers lookup requests to the Remote

Lookup Request Handler, which forwards requests to other peers. The Routing Table aids the

State Manager and the Remote Lookup Request Handler in identifying the peers to

communicate with.

With this architecture, each peer in the network has an RDF4Led Storage Manager responsible

for storing and maintaining the RDF data locally. The Storage Manager handles data insertion or

deletion and resolves query requests. If new data needs insertion or updating, the Dictionary

will first encode the string into an identifier to accelerate the search and save the memory space

in the Storage Manager. The design of the flash-aware storage layout and indexing scheme of a

single RDF4Led machine are in use as they cater to the need for a suitable storage method for

lightweight edge devices. Hence, the Storage Manager contains a buffer layer and a physical RDF

storage layer. The data in the physical layer is organized as data blocks; the buffer layer is the

index of each data block in the physical layer. In our system, the indexes of the data blocks are

published to the State Manager. Using the peer information from the Routing Table and based

on the indexed key, the State Manager will decide which data block should be replicated or

exchanged to which peer to maintain the load balance for the network.

To retrieve RDF triples from the Physical Layer, the Storage Manager initially searches the Buffer

Layer to identify the indexes of the data blocks potentially containing the desired results.

Subsequently, the Storage Manager accesses the encoded values from the Physical Storage

Layer, utilizing the key value of each data block. This retrieval allows the Storage Manager to

further decompose the encoded value into multiple tuples, facilitating subsequent result

trimming.

After compiling a SPARQL query, the Query Compiler computes an optimized query plan. Each

triple query request of the query plan is resolved by the Lookup Service, which will search in the

local storage of a peer or forward the request to remote peers. The search mechanism in the

P2P system is indicated by Routing Table, which is essential for a structured P2P overlay, as it

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

72

holds the information of other peers. The Routing Table ensures a triple query request is

answered by a particular peer if the requested data exists in the overlay. When matched triples

are found in a peer, the result sets are forwarded back to the Query Executor as a final or

intermediate result. The result generated by the Query Executor would be translated by the

Dictionary back to the original format of the triples as the output.

4.3.2.2 Preliminary Experimental Findings
This system is developed in Java and reuses as much of the source code from RDF4Led and P-

Grid as possible. We also re-implemented some parts using updated technologies. For instance,

we recycled the dictionary module from RDF4Led and the bootstrapping mechanism from P-

Grid. The Java WebSocket implementation in the initial version of P-Grid was replaced by gRPCto

improve the system’s ability to handle asynchronous message passing.

We conducted our experiments using a cluster of 4 to 16 Raspberry Pi 4 (Pi4) devices, which

serve as lightweight and cost-effective edge devices for the IoT. Each device is equipped with

quad-core processors clocked at 1.5GHz, 8GB of RAM, and an onboard LAN connection with a

speed of 1Gbps. Peers are considered directly interconnected with every other peer in the

experiments.

For our experiments, we utilize the ISD (Integrated Surface Dataset) [ISD24], a notable weather

dataset comprising weather observations collected from 20 thousand weather stations

worldwide since 1901. This dataset encompasses various measurements, including

temperature, wind speed, wind angle, and more. Moreover, each observation is accompanied

by timestamps indicating when these measurements were recorded.

Figure 4-16. Atomic Triple Pattern- Listing all observations

Experiment 1: QET of a Single Atomic Triple Pattern

To initiate the study of our system’s behavior when responding to a SPARQL query, we measured

the QET (Query Execution Time) of a SPARQL query containing a single atomic triple pattern, as

depicted in Figure 4-16. Given that this query doesn’t entail any join operations, this experiment

aims to offer an analysis of how message passing within a P2P network influences the QET of

such a P2P RDF engine.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

73

Figure 4-17. QET of Atomic Triple Pattern TP1 Using ISD Dataset. N is the number of peers in the system

Figure 5.3.2.2

It is essential to note the measurements we obtained here regarding the IO delay within our

setup. Through a microbenchmark of network IO, we determined that the act of sending 1000

messages, each of 1KB in size, consumes approximately 1147 milliseconds. It’s worth noting that

the delay in local storage IO is notably minor in comparison, rendering it inconsequential when

compared to the time taken for communication.

As mentioned in the previous section, the number of triples is divided approximately equally

among the peers involved, indicating that the network achieved a balanced key distribution after

multiple data exchange phases during P-Grid construction. With N participating nodes, the query

initiator required at most log(N) hops to locate the results.

Under these data setup conditions, we varied the size of the ISD dataset to 26K, 52K, 140K, 208K,

416K, 720K, 1M, and 2M, as shown on the x-axis. Consequently, this led to varying numbers of

RDF triples being returned for the atomic triple pattern: 2K, 4K, 10K, 16K, 31K, 54K, 75K, and

153K. It is worth noting that in this scenario, the size of the result set accounted for nearly 8%

of the total dataset. The number provided is significantly larger than the actual result size

typically returned from a SPARQL query, which often falls below 1% or even 0.1%. We measured

the QET by recording the time from the initiation of a request until the initiator received all

matching results from the answering nodes. The test results for query execution time when

responding to a single atomic triple pattern on different data scales in our setup are presented

in the Figure 4-17.

As shown in the Figure 4-18, our system experiences delays in searching and retrieving data,

ranging from 1 to 6.5 seconds, across datasets comprising 26K to 2M triples. Throughout the

querying process, the communication cost encompasses several factors, including the hops

required to locate answering peers, the expense incurred as answering peers transmit messages

containing possible block entries, the outlay for the query initiator to request matching RDF

triples for each block entry received from answering peers, and the cost for answering peers to

send messages containing matching RDF triples.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

74

Figure 4-18. QET of Atomic Triple Patterns TP1~4 Using ISD Dataset on 16 Pi4s

Furthermore, the results shown in the Figure 4-18 highlight that QET is significantly influenced

by the number of matching RDF triples returned. Increasing the dataset size leads to a

considerable delay increase. In this context, the difference in QET across various network sizes

is not very significant. Increasing the number of involved nodes results in slight delays. This is

primarily because, when considering datasets of the same size, the number of matching RDF

triples remains constant, with only one or two hops added during the searching phase.

 Experiment 2: QET of Complex Join Query Patterns

Figure 4-19. Join Query Pattern containing 3 atomic TPs -Listing information of all observations made by a sensor

To gain further clarity on the impact of message passing quantity, we repeated the experiment

using various triple patterns (TPs). To avoid redundancy, we present results from our 16-node

network. Figure 4-18 depicts the test outcomes utilizing a triple query pattern from the 2nd

SPARQL query, employed in our second experiment. Given the similarity in the number of

matched triples between TP3 and TP4 in the query shown in Figure 4-19, and TP1 in the query

presented in Listing 1, the delays are almost the same.

For TP2, we fixed the subject %sensor% to a specific sensor IRI, resulting in a fixed number of

matched triples and returned results, even as the data scale increased. The QET remains

consistent despite the growth in data size. Our system achieved the capability to return around

four thousand results within less than a second in the context of a 16-node system.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

75

Using an ISD dataset of 26K triples, and a cluster of 16 Pi4s, the QET for the join query, as

illustrated in Listing 2, was found to be 11.15s. To extrapolate the execution time of join queries

with uniform data distribution across various dataset sizes and network scales, we are prompted

to employ synthetic data to execute an analogous join query.

Figure 4-20. QET of Multiple Join Operations with Uniform Data Distribution

Figure 4-20 presents the test results. As anticipated, the query execution time increases with

the number of answering nodes and the storage size of each peer. The figure illustrates that

there is a direct correlation between the execution time of the join query and the number of

peers participating in the query. This suggests that the more peers are involved in the join query,

the longer it takes to complete the query due to the increased communication overhead.

Furthermore, a significant rise in execution time is observed when the number of tuples per peer

reaches 1M. However, when the number of tuples per peer remains below 105 the execution

time shows little variation. This phenomenon may be attributed to the longer search time

required for each answering peer in its local storage with a substantially larger dataset, resulting

in an increased number of messages in transit.

4.4 COMPONENT DESIGN
The detailed design of the Orchestration & Optimization system, as depicted in Figure 4-21, is a

pivotal component slated for development in task T5.3 of the project. This system is designed

to enable adaptive coordination and optimization, crucial for handling the dynamic and evolving

requirements of a SmartEdge swarm. To fulfill this objective, T5.3 will introduce two key

subsystems: the Orchestrator and the Optimizer, as introduced in Section 5.1. The Orchestrator

is tasked with orchestrating tasks from application specifications, while the Optimizer focuses

on analyzing data and processes to enhance performance and efficiency. Both of these

subsystems will be tightly integrated with the SmartEdge runtime, a component developed in

task T5.4. The SmartEdge runtime will execute plans generated by the Orchestrator, indicating

its role in translating orchestration strategies into actionable tasks. This holistic approach

ensures seamless coordination and optimization within the system, aligning with the project's

overarching goals of efficiency and adaptability.

A task, defined as a semantic program, can be assigned to a smart node through the Task

Register of the orchestration subsystem. This registration process provides the mechanism for

smart nodes to receive and execute specific tasks within the SmargtEdge swarm architecture.

There are two primary methods for assigning a program: it can be directly sent from the

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

76

toolchain compiler or transferred from the Orchestrator of another SmartEdge smart node. In

the first method, the task is transmitted directly from the toolchain compiler, which is a part of

the development environment used to create programs for the smart nodes. In the second

method, the task is transferred from the Orchestrator of another smart node within the swarm,

enabling distributed task assignment and execution. Once a task is received, it undergoes

validation by a Task Validator. This validation step ensures that the task is compatible and

suitable for execution within the swarm environment. Specifically, the Task Validator checks

whether the task is responsible for the swarm, meaning it does not require the node to serve

other swarms or conflicting responsibilities. This validation process helps maintain the integrity

and efficiency of the SmartEdge swarm by ensuring that tasks are appropriately allocated and

executed across the nodes.

Figure 4-21. System Architecture of the Coordinator & Optimizer

The semantic program is then sent to the Execution Plan Builder which constructs an execution

plan to outline how the program will be executed within the SmartEdge swarm environment.

This execution plan is a strategic roadmap that determines the sequence of actions needed to

fulfill the program's objectives. To ensure optimal performance and resource utilization, the

execution plan undergoes optimization through the subsystem, Execution Plan Optimizer. This

optimization process fine-tunes the plan by analyzing factors such as computational complexity,

data dependencies, and network constraints. When a task is offloaded to a special node with

hardware acceleration, the optimizer calls the runtime optimizer of T5.2 (see above) to optimize

the hardware acceleration part of the operation.

The optimized execution plan specifies the tasks that can be executed locally on the current

smart node, as well as those that may need to be delegated to other nodes within the swarm.

In some cases, certain tasks may need to be federated or distributed across multiple smart nodes

to achieve efficient execution. This decision is based on factors such as task complexity, available

resources, and network bandwidth. The execution plan itself consists of a sequence of

SmartEdge processing primitives (cf Section 5.4.3 which are fundamental processing operations

that the SmartEdge Runtime can execute. By organizing the program's execution into a series of

primitives, the system ensures that each task is broken down into manageable steps that can be

efficiently executed by the SmartEdge Runtime across the swarm of smart nodes.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

77

The Task Assignee plays a critical role in orchestrating swarm operations by facilitating task

assignment and node recruitment within the distributed system. Initially, it undertakes the task

of swarm formation, leveraging its authority to allocate tasks to swarm participants. This

involves the intricate process of task distribution, commencing with the assignment of primitives

to smart nodes. Upon analysis, if the primitives are deemed suitable for local execution, the Task

Assignee seamlessly dispatches the primitive descriptions to the SmartEdge Runtime. These

descriptions encapsulate optimized parameter configurations generated by the Optimizer

subsystem, ensuring efficient execution of primitives on the designated smart nodes. However,

in scenarios where segments of the execution plan necessitate delegation to other nodes, the

Task Assignee employs a sophisticated strategy. It reconstitutes the execution plan into a

semantic program and initiates transmission to the relevant smart node(s), ensuring coherent

task execution across the swarm. While the process of converting back to a semantic program

may introduce unnecessary steps, it provides a generalized description of the task, allowing for

further optimization by other nodes based on their contextual understanding. Furthermore, the

Task Assignee actively engages in the recruitment of SmartEdge nodes, spanning diverse devices

such as edge systems, vehicles, sensors, and robots, thereby bolstering the swarm's capabilities.

This recruitment process mirrors the intricacies of the matchmaking mechanism introduced in

WP2, meticulously identifying and soliciting participation from nodes best suited to serve the

swarm's objectives. Integrated seamlessly with a Node Discoverer, the Task Assignee harnesses

the power of a Dynamic Knowledge Graph to catalog and maintain metadata pertaining to

discoverable nodes and swarm participants. Leveraging this repository, the Node Discoverer

formulates SPARQL queries tailored to the specific requirements of task execution or primitive

operations, enabling precise node discovery and recruitment.

The Dynamic Knowledge Graph can be implemented as an RDF store containing metadata

pertaining to discovered nodes within the network. This metadata includes specifications of the

devices and their real-time state, including factors such as location or resource availability. The

Dynamic Knowledge Graph can either be centralized on a smart node, serving as a hub for swarm

coordination, or distributed across multiple smart nodes. In the centralized model, a single smart

node assumes the responsibility of maintaining and updating the Dynamic Knowledge Graph.

Alternatively, in the distributed model, fragments of the knowledge graph are distributed across

multiple smart nodes, allowing for decentralized management and redundancy. Using RDF to

annotate participants' metadata enables the discovery process through querying the metadata

with SPARQL.

In the Optimizer subsystem, the State Listener and Performance Listener play pivotal roles in

updating the state of the smart edge nodes and monitoring the current performance of

primitives. These listeners continuously gather metrics, including those from the resource

manager, which serve as inputs to the Execution Plan Optimizer for optimizing the execution

plan. This updating process occurs dynamically at runtime, ensuring that the optimization

strategies are informed by real-time data. The Execution Plan Optimizer devises strategies to

optimize the execution plan based on the runtime metrics it receives.

4.5 SEMANTIC-BASED DISCOVERY AND FORMATION OF SWARM
As mentioned previously, the formation of a swarm mandates that each SmartEdge node

exposes itself along with its semantic description. Even for SmartEdge nodes lacking advanced

SmartEdge services and protocols, it is indispensable to register their specifications within the

knowledge graph. This ensures comprehensive visibility and accessibility of all nodes'

capabilities for seamless coordination and collaboration within the swarm.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

78

 The registration process can be conducted manually during the design phase, wherein

specifications are meticulously documented and subsequently uploaded to a cloud repository.

Alternatively, specifications can be dynamically added at runtime through the utilization of

smart edge message middleware, facilitating real-time updates to the knowledge graph as nodes

join or modify their configurations.

Figure 4-22. JSON-LD snapshot of semantic description of the camara located at Junction 270 in Helsinki

Figure 4-22 presents a detailed depiction of the semantic metadata associated with the camera

installed at Junction 270 in Helsinki, designated as the deployment site for UC2. For a

comprehensive understanding of the traffic network layout and camera deployments, readers

are directed to section 5.4.1.1. The data depicted in the figure is structured in JSON-LD format,

adhering meticulously to the Web of Things Thing Description (WOT-TD) ontology specified in

WP2. This structured representation encapsulates information about the camera, facilitating its

seamless integration and operation within the SmartEdge ecosystem. Lines 3 and 4 of the

metadata furnish essential particulars such as the camera's title and its unique identifier within

the SmartEdge ecosystem. This distinct identifier ensures the camera's unambiguous

identification and enables seamless communication and interaction within the ecosystem.

Additional properties, such as the camera's precise geographical coordinates (longitude and

latitude), can be included to augment its contextual awareness. Lines 11 and 12 delineate the

precise mechanism for accessing the video stream originating from the camera.

The advanced functionalities of SmartEdge Runtime, elaborated upon in Section 5.4.2.2,

empower all smart nodes to conduct hardware specification scans during the bootstrapping

phase. Additionally, the SmartEdge Runtime furnishes information regarding available service

hosts on each node. Leveraging the hardware specifications, the toolchain can ascertain the

capabilities of each smart node. These specifications are meticulously documented using the

Resource Description Framework (RDF) and subsequently stored in the local dynamic knowledge

graph. This robust repository forms the foundation for efficient resource allocation and seamless

coordination among nodes within the swarm.

An autonomous smart node seamlessly integrates into an existing network of peers by

autonomously introducing itself to other nodes within the network. This is achieved by

transmitting its semantic description to neighboring smart nodes, enabling them to identify and

establish connections with the newcomer. The description encompasses crucial details such as

endpoints for the node's available services, thereby facilitating streamlined communication and

collaboration among nodes within the swarm.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

79

Figure 4 depicts an exemplary subscription message originating from a smart node, crucial for

conveying detailed information about its capabilities and resources within the network

architecture, thereby facilitating efficient task assignment and coordination. The subscription

message delineates the endpoint for task assignment, from Line 7 to Line 17, providing a precise

reference for directing tasks within the network architecture. Subsequently, from Line 18 to Line

33, comprehensive insights into the device's hardware configuration, including CPU, RAM, and

GPU specifications, are meticulously provided. This data empowers decision-makers to allocate

tasks optimally based on resource requirements and constraints. Moreover, from Line 35 to Line

40, specific device capabilities or skills are highlighted, such as the capability for object detection

from images. This information enables nodes to allocate tasks aligned with the device's

specialized functionalities effectively.

Figure 4. Json-LD snapshot of semantic description of a smart node

-

4.5.1 RDFizing P4-based network information into Dynamic Knowledge Graph
This section outlines the operational framework wherein swarm nodes leverage P4-based

network information for both discovery and querying functionalities. The integration of the P4-

runtime API facilitates seamless communication channels between processes or controllers,

acting as gRPC clients, and the data plane elements of swarm nodes, operating as gRPC servers.

A prime illustration of this operational paradigm is depicted in Figure 4-23, wherein a P4

controller interacts with the P4 target via P4Runtime protocols. Within this context, the pivotal

role of the P4RDFizer, as shown in Figure 4-23, becomes apparent. Its core function involves

extracting crucial packet header information and encapsulating it into RDF objects. These RDF

data is then dynamically stored within knowledge graphs during runtime.

The crux of this process revolves around the transformation of P4-based data into RDF-

compliant structures. This facilitates the execution of intricate queries and analyses on the

network's behavior and characteristics. Additionally, the utilization of dynamic knowledge

graphs ensures the accessibility and updateability of information, thus accommodating the

dynamic nature of modern network environments.

Moreover, the integration of packet I/O mechanisms enables the seamless streaming of packets

from the data plane to the control plane via dedicated CPU ports. This facilitates further

inspection and analysis of network traffic, empowering administrators with deeper insights into

network performance and security.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

80

Figure 4-23. Integration of Dynamic Knowledge Graph and P4 Runtime for Packet-Level Metadata Collection

Various kinds of information obtained from the packets flowing through the P4 switch can be

stored within the dynamic knowledge graph (KG) inside the P4 controller node, such as ONOS

[Onos24]. For example, in Figure 4-24, two types of metadata information are annotated in RDF

data format: network-specific and swarm node-specific. As advocated in Deliverable D4.1, an

innovative design for in-band telemetry can be activated for all swarm nodes. Besides traditional

network-specific metadata such as switch ID and hop latency, the SmartEdge packet header

includes innovative augmented metadata fields such as CPU load and device localization

information. These rich metadata regarding the network state are cloned to the controller via

packet I/O operations for further inspection and are extracted as RDF objects inside the P4 ONOS

controller. They are then stored as RDF triples for the dynamic knowledge graphs at the

controller node. The controller node can be single or multiple; thus, the dynamic knowledge

graphs can be centralized or distributed. Taking the distributed controllers as an example, the

remote controller node can maintain a partial view of the network state, based on which the

distributed controllers hold distributed dynamic knowledge graphs of the whole network,

making it possible to store and query network information in a distributed fashion. In this way,

remote controllers work collaboratively, such as figuring out the optimal path selection rule for

devices in the data plane by sharing each one’s knowledge of the current network state. Via

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

81

P4Runtime, the controller then installs the updated path selection rule, i.e., modified table

entries, into the P4Runtime Server.

Figure 4-24. RDFizing switch-specific and robot-specific metadata

In Figure 4-25, the shared repository is presented prior to the RDFization process between the

Network Control Plane and Middleware Layer, playing a pivotal role in facilitating swarm node

management (cf D4.1). The repository comprises two crucial tables: the location and attributes

tables. The location table serves to store essential node information, facilitating the

management of swarm node joining by maintaining mappings between each node's Access Point

ID (AP_ID) and Universally Unique Identifier (UUID). Simultaneously, the attributes table stores

additional node details, including mappings between UUIDs and attributes such as Media Access

Control Address (MAC_ADDR). These tables collectively provide comprehensive insights into

node characteristics and enable efficient coordination and decision-making within the network

architecture, laying a solid foundation for seamless integration and management between the

Network Control Plane and Middleware Layer.

Figure 4-25. Shared repository between Network Control Plane and Middleware Layer

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

82

By transforming these entries into RDF and storing in the new DKG, these node-specific

information can be integrated into the dynamic knowledge graph. Consequently, various APs

located at various P4 controller nodes can exchange node-specific information and answer

requests collaboratively.

For instance, in the DDS use case of Figure 4-26, where a publisher publishes a new ROS message

only accessible to its subscribers who share the same group ID. As the packet goes through the

P4 switch, it will be forwarded to the control plane for further inspection. The controller node

would query the swarm nodes that belong to the same group as the publisher and identify those

as legal subscribers, and therefore resolve the respective destination addresses from the

knowledge graph. With the help of the shared knowledge graph, in this case, the ROS publisher

can multicast ROS messages to a specific group of ROS subscribers rather than broadcast

messages to irrelevant receivers, realizing the access control for multicasting.

Figure 4-26. Dynamic Knowledge Graph (KG) use case example within DDS messaging framework

4.5.2 Network-aware Swarm Formation with DDS

4.5.2.1 ROS data types and data collections

Robots are designed to collect data through various sensors that allow them to perceive and

interact with their environment. These sensors cater to different aspects of perception, such as

detecting obstacles, measuring distances, capturing visual information, or sensing physical

contact. Examples of sensors include cameras, lidar, radar, ultrasonic, infrared, touch,

gyroscopes, accelerometers, and more.

Each sensor type serves a specific purpose, and they continuously measure and capture data

from the surrounding environment. For instance, cameras capture images or video feeds, and

lidar sensors emit laser beams to create 3D maps of the surroundings. Robot data collection

involves a continuous loop of sensing, acquiring, processing, and acting. Integrating advanced

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

83

sensors and intelligent algorithms enables robots to navigate, interact with their environment,

and perform various tasks autonomously.

The number and type of robot sensors are determined by their design, purpose, and intended

tasks. Here are some common sensors used in robotics and how they collect data:

Inertial Measurement Units (IMUs) Sensor: IMUs consist of accelerometers and gyroscopes that

measure acceleration and angular velocity, respectively. These sensors help the robot

understand its orientation, movement, and changes in velocity.

Camera Sensor: Cameras capture visual information from the environment, and this data is

commonly used for tasks such as object recognition, navigation, and mapping. The information

gathered by cameras is usually in the form of images or video feeds.

Lidar (Light Detection and Ranging): Lidar sensors work by emitting laser beams and measuring

how long it takes for the laser to bounce back after hitting an object. This information is then

used to generate highly detailed 3D maps of the robot's surroundings. By analyzing these maps,

the robot can navigate and avoid obstacles in its environment more efficiently and accurately.

Force/Torque Sensors: These sensors are essential for force control tasks such as grasping

delicate objects or applying specific forces during manipulation. They measure forces and

torques applied to the robot's end effector or joints.

Temperature Sensors: It is crucial to monitor the temperature of a robot's components for

proper functioning and safety. Sensors can be placed throughout the robot to ensure that critical

parts stay within acceptable temperature ranges. Temperature sensors are often installed in

edge devices to ensure infrastructure safety.

Microphone Sensor: Robotic devices equipped with microphones can capture audio data, which

can be utilized for various purposes, such as speech recognition, environmental sound analysis,

and communication.

The control system or onboard computer typically processes the data gathered by a robot's

sensors. Advanced algorithms are often utilized to make informed decisions based on this data.

This enables the robot to function autonomously or with human guidance, making it a valuable

tool in various industries.

4.5.2.2 Swarm coordination mechanisms.
Data Flow: The seamless transfer of data from a physical sensor to a robot and other functional

nodes of the robot has been made possible with the aid of the wrapper or sensor APIs and

standard message types provided by ROS2. The sensor API effectively converts raw sensor data

to a message type that is compatible with ROS2. Subsequently, the ROS2 publisher, using the

specific message type, can read sensor data directly from the sensor and publish it through a

ROS topic. Furthermore, any functional node can access the published sensor data in a ROS2

message format only by subscribing to the specific topic.

The Intel RealSense camera D435i is equipped with the RealSense SDK and a ROS2-compatible

message type wrapper. This wrapper converts raw IMU sensor data to the ROS2 standard

message type 'sensor_msgs::Imu', and subsequently publishes it on two different topics -

'/camera/camera/gyro/sample' and '/camera/camera/accel/sample'. If the parameter for

unite_imu_method is set to a value greater than 0, a new topic called '/{robot_namespace} /imu'

is created, containing data from both accel and gyro combined, subsequently published to this

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

84

topic. The SmartEdge runtime node can subscribe to the sensor data that the ROS agent has

previously published. Once received, the ROS msg to the RDF converter can convert various

types of ROS2 messages to RDF data. The converted RDF data is then published through a new

topic, which is identified as "/{robot_namespace}/semantic_imu". The semantic stream

processing node can subscribe to the "/semantic_imu" topic to process the RDF data further.

This will allow additional processing to be performed on the data more efficiently and

effectively. A similar process is followed for the other sensor data types respectively.

4.5.2.3 Communication at application level – ROS message
ROS utilizes a simplified message description language to describe the data values or messages

that ROS nodes publish. This simplification facilitates the automatic generation of source code

for various programming languages by ROS tools. The message descriptions are stored in .msg

files located in the msg/ subdirectory of a ROS package. The .msg file is comprised of two

components: fields and constants. Fields represent the data transmitted within the message,

while constants define useful values that serve to interpret those fields. Using the built-in data

types in Figure 4-27 and message types, it is possible to create custom message types according

to the requirement.

Figure 4-27. Built-in types suppoerted by ROS2

4.5.2.4 Semantic ROS for SmartEdge runtime
The design of Semantic ROS (Figure 4-28) consists of three key components, each playing a

crucial role in transforming raw ROS data into a semantically enriched RDF format. This not only

enhances data interoperability but also opens up new possibilities for advanced data processing

and querying.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

85

ROS Scanner Node: The first component is the ROS Scanner Node; it acts as a discovery agent

within the ROS network. Its primary function is to scan the network, identify all available data

topics, and categorize them based on their types. This information serves as the foundation for

the subsequent components, ensuring a comprehensive understanding of the existing data

landscape.

Figure 4-28. Semantic ROS design

ROS Message Semantic Annotator: Building on the data catalog provided by the ROS Scanner

Node, the ROS Message Semantic Annotator takes on the task of transforming raw ROS

messages into RDF format. This component subscribes to data topics generated by various ROS

nodes, such as cameras, IMUs, and laser scanners. It then applies semantic annotations based

on a predefined ontology, converting the data into RDF and publishing it as new ROS topics. This

transformation not only adds a layer of semantic richness to the data but also facilitates easier

integration with other semantic web technologies.

Semantic Stream Processing Node: The final component, the Semantic Stream Processing Node,

operates as a ROS action server and interfaces with a Dynamic Knowledge Graph engine. This

component subscribes to the RDFized data produced by the ROS Message Semantic Annotator

and provides a platform for querying this data using SPARQL queries and receive the results via

feedback publisher over DDS. This allows robots within the SmartEdge swarm to request specific

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

86

information based on their needs, opening possibilities for dynamic and intelligent decision-

making.

4.6 ORCHESTRATION VIA CONTINUOUS QUERY FEDERATION
T5.3 introduces the Continuous Query Federation (CQF) mechanism for the Orchestrator to

continuously federate a query to a network of interconnected nodes. This allows for dynamic

and collaborative data processing among SmartEdge devices within SmartEdge Swarms,

functioning as autonomous processing agents (a SmartEdge node or a Coordinator representing

a swarm). In essence, an Orchestrator can delegate partial workloads to their peers through

subscribing to continuous queries using following operations:

▪ Subscription and Discovery Operations: The mechanism involves subscription and

discovery operations to enable the deployment of a stream processing pipeline across

distributed sites. This is particularly useful for scenarios where data streams are

generated from different locations, such as cameras, lidar streams from vehicles or

robots.

▪ Autonomous SmartEdge Nodes: Each autonomous SmartEdge node serves as a

processing node and provides access to data streams. These streams can originate from

various sensors, and the node can partially process the incoming data before forwarding

the results as mappings or RDF stream elements to its parent node.

▪ Query Federation: When a query is subscribed to the top-most node (root node), the

query is divided into sub-query fragments. These fragments are then deployed at one

or more sites via subscribed nodes. The query fragments, consisting of one or more

operators, can be distributed across different processing nodes. The federation process

is recursive, allowing sub-queries to be delegated to subscribed nodes.

▪ Synchronization and Timing Stream: All participant nodes in the processing pipeline

synchronize their processing timeline using a timing stream propagated from the root

node. This ensures that the processing of sub-query fragments is coordinated across the

network.

▪ Dynamic Processing Topology: The federation process is dynamic and can be adjusted

in real-time. The processing topology of the pipelines can be configured dynamically by

changing how and where participant nodes subscribe to the processing networks.

To enable implement such a federation mechanism, we extend a decentralized version of the

CQELS engine [Danh11] named Fed4Edge [Manh19]. Thanks to the platform-agnostic design of

its execution framework [Danh15], the core components are abstract enough to seamlessly

integrate with various RDF libraries, facilitating portability across different hardware platforms.

The core components for CQF is depicted in Figure 4-29 CQL reuse the core components of

CQELS and RDF4Led, such as the Dictionary, Encoder, Decoder, Dynamic Execution, Adaptive

Query Optimizer, and Buffer Manager. Additionally, extension plugins, such as Adaptive

Federator, Thing Directory, Stream Input Handler, and Stream Output Handler, are built to

facilitate the federation mechanism.

The CQF architecture seamlessly integrates components from CQELS and RDF4Led, optimizing

RDF data processing for edge devices. At its core, the Encoder, Decoder, and Dictionary

collaborate to normalize RDF data, reducing memory usage and enhancing cache efficiency

[Anh18]. This normalized data flows through the Stream Input Handler, where it is encoded

before being passed to the Buffer Manager for further processing.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

87

Figure 4-29. Key components to enable Continuous Query Federation

The Buffer Manager plays a pivotal role in managing windowed data and cached information,

utilizing flash-aware updating algorithms for swift data updates [Danh11] [Danh17]. From here,

the data proceeds to the Dynamic Executor, which dynamically adjusts query execution

strategies based on the evolving data distribution [Danh18].

Driving optimization further, the Adaptive Optimizer continually refines query plans, leveraging

the insights gained from static data patterns. This optimization process ensures efficient

processing, whether employing fresh or incremental update policies for join results handled

within the buffer. When a task is offloaded to a special node with hardware acceleration, the

optimizer calls the runtime optimizer of T5.2 (see above) to optimize the hardware acceleration

part of the operation.

The Adaptive Federator serves as the engine's query rewriter, intelligently dividing queries into

subqueries and pushing operators close to streaming nodes for enhanced performance.

Complementing this, the Thing Directory stores metadata for service discovery, fostering

seamless communication between SmartEdge nodes[Dell17].

Throughout this process, the Stream Input Handler subscribes to and listens for subquery

results, while the Stream Output Handler efficiently disseminates these results to other nodes

or back to the requester.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

88

Overall, the interconnectedness of these components forms a cohesive architecture tailored for

efficient and adaptable RDF data processing in SmartEdge environments.

4.6.1 Preliminary Experiment and Results
From our work in [Manh19], we implemented the baseline CQF to profile and analyse

performance behaviour of the systems at the IoT-Edge-Cloud Testbed at TU Berlin.

Evaluation Setup

Hardware & Software: The experiment hardware consists of a cluster comprising 85 Raspberry

Pi model B nodes. Each node boasts a Quad-Core 1.2GHz Broadcom BCM2837 64bit CPU, 1GB

RAM, and 100 Mbps Ethernet capability. These nodes are interconnected through five TP-LINK

Jetstream T2500-28TC switches, each featuring 24 100 Mbps Ethernet ports and 4 1000 Mbps

uplinks. The T2500-28TC switch offers a non-blocking aggregated bandwidth of 12.8Gbps. Four

of these switches, responsible for connecting streaming nodes, are linked to the fifth switch via

the 1000 Mbps links. The fifth switch facilitates connections to the CQELS processing nodes. All

nodes operate on Raspbian Jessie as the operating system, utilizing OpenJDK 1.7 for ARM as the

JVM. We've configured a maximum heap size of 512MB for the Fed4Edge engine on each node.

Experiments and Results

Baseline Calibration (Exp1): In the first experiment, we calibrated the maximum processing

capability of a node, using Raspberry Pi devices as edge nodes and a high-performance PC as a

server. We identified a bottleneck phenomenon, revealing that increasing the number of

streaming nodes beyond four decreased overall processing throughputs due to bandwidth

limitations.

In this experiment, we calibrated the maximum processing capability of a processing node as

the baseline for the following federation experiment. We increased the number of stream nodes

to observe the bottleneck phenomena whereby increasing more streaming nodes decreases the

processing throughput of the network. Each streaming node will stream out recorded data as its

maximum capacity. We will use Query 1 and its two variants as the testing queries. These two

variants are made by reducing four triple patterns into 1 and 2 patterns respectively. The

throughput is measured by using a timing stream whereby each streaming nodes will send

timing triples indicating when each of them starts and finishes sending their data. In each test

we will equally split 500k-1M observations among streaming nodes and record how much time

to process these observations to calculate the average throughput. Note that we separated the

streaming and processing processes in different physical devices to avoid performance and

bandwidth interference which might have an impact on our measurements.

Figure 4-30 the results of the experiment Exp1. The maximum processing throughput for three

variants of Query 1 on one single edge device is from 4200-5000 triples corresponding to 4

streaming nodes. It is interesting that increasing the number of streaming nodes more than 4

will gradually decrease the overall processing throughput. The results are consistent with

different complexities of the variants of Query 1. We observed that the CPU usages were around

60-70% and the memory consumption was around 270-300MB in all tests. Therefore, we can

conclude that the bottleneck was caused by bandwidth limitations. We also carried out a similar

test with Q1 on a PC (Intel Core i7 i7-7700K, 4GHz, 1GBb Ethernet and 16GB RAM) as the root

node which has more than 10 times of processing power, memory and network bandwidth than

those of a Raspberry Pi model B. As we expected, the PC's maximum throughput is

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

89

approximately 36k triples/second, around 8-10 times the one with a Raspberry Pi. Note that this

PC costs more than the price of 40 Raspberry Pi nodes.

Figure 4-30. Baseline experiment result

Fan-out Federation (Exp2)

The second experiment explored the concept of fan-out federation, assessing the impact of

increasing the number of edge nodes on processing throughput.

Figure 4-31. Topology

To test the possibility of increasing the processing throughput by increasing more edge nodes

as autonomous agents to the network, we carried out the tests on five topologies as shown in

Figure 4-31. The first topology (1-hop) in Figure 4-31 (a) was the configuration that gave the

peak throughput in Exp1. Let k be the number of hops the data has travelled to reach the final

destination, we will increase k to add more intermediate nodes to this topology to create new

topologies. As a result, we can recursively add n nodes to the root node (k=2, namely 2-hop) and

then n nodes to the root node's children nodes (k=3, namely 3-hop) whereby n is called the

fanout factor (denoted as n-fanout). Then, we have ∑ 𝑛𝑖𝑘−1
𝑖=0 as the number of nodes of a

topology with k hops and fanout factor n. We choose n=2 and n=4 (corresponding to the number

of streaming nodes at the maximum throughput reported in Exp1 below), thus, we have four

new topologies with 3, 5, 7 and 21 processing nodes in Figure 4-31 (b), Figure 4-31 (c), Figure

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

90

4-31 (d) and Figure 4-31(e). In each processing topology, the lowest processing nodes are

connected with 4 streaming nodes. We will record the throughput and delay for processing three

queries (Q1, Q2, Q3 and Q4) on these five topologies in a similar fashion to Exp1.

Figure 4-32. Fan-out Federation Experiments: Processing Throughput Results

Figure 4-32 shows the results of throughput improvements via federating the processing

workload on other intermediate nodes in four proposed topologies. The results show that

adding more nodes will increase the processing throughput in general. Most queries have their

processing throughput consistently boosted up as a considerable amount of processing load was

done at the intermediate nodes. However, the increase is not consistently correlated with the

total number of processing nodes. In fact, the topology with 5 nodes in Figure 4d gives a slightly

higher throughput than those of the topology with 7 nodes in Figure 4c. This can be explained

by the fact that both topologies have 4 processing nodes at the lowest levels (called leaf

processing nodes, i.e, connecting to streaming nodes) but the data in the latter topology has to

travel 1 more hop in comparison with the former. Due to our pushing down, rewriting strategy

presented in Section 3, these two upper blue nodes in Figure 4c did not significantly contribute

to the overall throughput but on the other hand cause more communication overhead.

Looking closer at the reported figures, we see a high correlation between the number of leaf

processing nodes, i.e. 𝑛𝑘−1, and the processing throughput in all topologies. This shows that our

proposed approach is able to linearly scale a network of IoT devices by adding more devices on

demand. In particular, a network of 21 Raspberry Pi nodes can collaboratively process up to 74k

triples/seconds or equivalent to roughly 8500 sensor observations/second that are streamed

from other 64 streaming nodes. Hence, the above 20K weather stations across the globe of

NCDC dataset can be queried via such a network with the update rate 20-30 observations per

minute which are much faster than the highest up- date rate currently supported by NCDC 6, i.e.

ASOS 1-minute data. Moreover, the processing capacity of this network is twice as much as that

of the above PC but it only costs roughly half of the PC. Regarding the energy consumption, each

Raspberry Pi only consumes around 2W in comparison of 240W of the above PC.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

91

Figure 4-33. Fan-out Federation Experiments: Average Processing Time Results

Figure 4-33 reports the average time for each observation to travel through a processing pipeline

specified by each query on different topologies, i.e., average processing time. It shows that

adding more intermediate nodes for query Q1 and Q2 can lower the average processing time as

it can reduce queuing time at some nodes. That means communication time might be a

dominant factor for the delay in these processing pipelines. In queries Q3 and Q4, we witness

the consistent increase in processing time w.r.t. the number of hops which explains the nature

of query Q3 and Q4 that needs more coordination among nodes. However, it is interesting that

increasing 1 hop in organizing a network topology just adds 10-15% delay while the maximum

throughput gain is linear to 𝑛𝑘−1.

4.6.2 From empirical insights to design and implementation of Orchestrator and

Optimizer
We observed the CPU, memory consumption and bandwidth in our experiments. It is interesting

that all tests used 60-70% of CPU (across 4 cores), 25-30% of physical memory and 20-40% of

Ethernet bandwidth (i.e., 100Mbps). Our reported performance figures show that edge devices

have enough resources to enable semantic interoperability for the edge computing paradigm.

From our analyses of hardware and software libraries, the most potential suspects for the

processing bottleneck are related to the communication among the nodes. Hence, there is a lot

of room to make the Orchestrator much more efficient and scalable. In this context, to achieve

KPI K4.3 and K4.5, we are going to address following challenges.

The first challenge is how to address the multiple optimization problems that such a federated

processing pipeline entails. The first one is how to optimize an RSP engine for edge devices which

have distinctive processing and I/O behaviors from those of PC/workstations due to their own

design philosophies. The second challenge is about how to find optimal operator placements on

very dynamic execution settings. The subsequent challenge is how to define cost models which

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

92

are no longer limited to processing time/throughput but need to cover several cost metrics such

as bandwidth, power consumption and robustness.

Regarding cooperation and negotiation among RSP autonomous agents, the next challenge is

the study and exploration of protocols and strategies that follow the multi-agent system

paradigm. Although early works on the topic [Tommasini19] point at potential opportunities in

this area, several aspects have not been studied yet. These include the usage of individual

contextual knowledge for local decision making (potentially through reasoning) and for a

resource-optimised distribution of tasks among a set of competing/associated nodes. The

dynamics of these federated processing networks would need to adapt to changing conditions

of load, membership, throughput, and other criteria, with emerging behaviour patterns on the

sensing and processing nodes.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

93

5 CROSS LAYER TOOLCHAIN FOR DEVICE-EDGE-CLOUD CONTINUUM

5.1 OVERVIEW OF CROSS-LAYER TOOL CHAIN FOR DEVICE-EDGE-CLOUD CONTINUUM
T5.4 will integrate components from network layer to application layer into an integrated

toolchain so that it can build a runtime toolchain to abstract the capabilities of sensors, Edges

and Cloud using a declarative programming model. This model will integrate the network

programmability of WP4 and semantic interoperability of WP3 with semantic specifications of

such capabilities. Via these semantic specifications, the tool chain will release a developer from

having to specify device configurations, sensory inputs, network settings and data operations of

data stream processing pipelines or application logic in various programming languages and

configuration formats.

 First T5.4 will develop the runtime toolchain that can read a high-level specification to prepare

the necessary runtimes for SmartEdge nodes to be deployed for certain application settings. The

task will extend the compiler SSR[LePhuoc2021] which was developed by TUB to read

specifications written in grammar composed from SPARQL or SHACL. For instance, to prepare a

deployment including a set of RSUs in UC2, the developer will prepare a configuration file in RDF

(e.g, JSON-LD or RDF-Turtle) for such deployment, which includes description of hardware

configurations of edge computing units and connected sensors, e.g., camera, LiDARs and other

metadata related the deployment context. Note that a visual editor can be developed to provide

a wizard-based GUI to guide the developer on the step-by-step process. Also, reusable templates

or previous configurations can be utilized with the support of SPARQL features from the

underlying knowledge graph engine.

From the semantic specification of a deployment, the runtime toolchain will build, and pack

necessary components provided in WP3, WP4, T5.1, T5.2 and T5.3 into runtime artifacts to

install or deploy into SmartEdge nodes involved in the deployment. Some examples of such

artifacts would be docker images, ROS packages, Linux/Window sandboxes or Jar packages for

JVMs. Note that such an artifact will contain a bootstrapping knowledge graph to describe the

smart-node, such as expected roles and capabilities, so that it has enough data to join or to form

a swarm autonomously.

Another advanced feature for such semantic specification is pre-configurate a deployment to

serve a task or recipe in WP3 by including them in its deployment context metadata. For

example, the developer would only have to specify semantic outputs of Semantic SLAM maps in

Smart Factory UC or semantic queries over high-level objects and events in automotive UCs in

standardized formats/languages to connect them via low-code editor of WP3 to generate a

recipe to specify the application logic. Then, the runtime toolchain will have to compute how to

inject the coordination logic into the Federator of T5.3 to form a swarm of participant nodes, to

setup data links, and how to route the data to AI components according to their sensing and

processing capabilities, in order to be able to generate such high-level expected outcomes.

By integrating features provided by Federator and Optimizer of T5.3, the runtime toolchain will

direct the participant SmartEdge nodes to dynamically load and configure all necessary

components into a decentralized application logic to participating IoT devices, edge and cloud.

It will rely on the features of Federator T5.3 to decompose the query to necessary data and AI

operations to generate federated execution plans to generate the desired outputs. Besides, such

an execution plan will be adaptively coordinated and optimized with the mechanism in T5.3 with

the capability to elastically scale on demand in T5.2.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

94

5.2 REQUIREMENTS
ID/Ver: SW-018/v1.1 Related Use Case(s): UC-3 Task: T5.4

A swarm must be able to handle smart nodes by mapping their data into the same coordinate

system regardless of their movement. For example, for two smart nodes in a swarm to

cooperate about the physical movement of an object, they must have the same special frame

of reference, or be able to transform the other smart-nodes frame of reference into their

own. The same holds true for temporal mappings, i.e., all collaborating smart nodes must

share a common concept of time.

The Semantic Programming model provided by T5.4 and the Data Fusion Component

provided by T5.1 will enable these computations.

ID/Ver: SW-025/v1.1 Related Use Case(s): UC-3, UC-4 Task: T5.4

The swarm can be made up of homogeneous or heterogeneous swarm nodes and capabilities.

The swarm node can all be of the same type and capabilities, or they can be of different types

and capabilities.

The Semantic Programming model provided by T5.4 will allow interoperability and address

these heterogeneities.

ID/Ver: HP-003/v1.1 Related Use Case(s): UC-2, UC-3, UC-5 Task: T5.4

Capability to read radar message format (JSON stream).

ID/Ver: HP-004/v1.1 Related Use Case(s): UC-2, Task: T5.4

Capability of reading and processing camera stream data (currently RTSP).

ID/Ver: HP-005/v1.1 Related Use Case(s): UC-2, Task: T5.4

Capability to read Controller status messages (JSON stream).

ID/Ver: HP-008/v1.1 Related Use Case(s): UC-2, Task: T5.4

Ability to handle public transit open data (tram locations) from outside.

ID/Ver: HP-009/v1.1 Related Use Case(s): UC-2 Task: T5.4

Support for Helsinki’s open data API for providing data to Helsinki from the swarm sensors.

ID/Ver: HP-010/v1.1 Related Use Case(s): UC-2, UC-3, UC-5 Task: T5.4

Dashboard or user interface (web client) for viewing the data (sensor network, traffic

indicators, swarm operation, raw data).

Several SmartEdge plugins provided by T5.4 will fulfill these requirements.

ID/Ver: HP-013/v1.1 Related Use Case(s): UC-2, UC-3, UC-5 Task: T5.4

The SmartEdge components system must be able to run on ARM-based hardware and

Ubuntu/Linux OS.

ID/Ver: HP-015/v1.2 Related Use Case(s): UC-2, UC-3, UC-5 Task: T5.4

The SmartEdge components system must be able to run on x86-based hardware and

Ubuntu/Linux OS.

SmartEdge Runtime will be implemented to be portable to different hardware or OS.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

95

ID/Ver: HP-016/v1.2 Related Use Case(s): UC-2, UC-3 Task: T5.4

It should be possible to dynamically add a new sensor stream to an existing smart-node, as

sensors on other devices may join or leave the swarm.

T5.4 SmartEdge Runtime will detect and update to the DKG if new sensors are found.

ID/Ver: LC-001/v1.2 Related Use Case(s): UC-2, UC-3, UC-4 Task: T5.4

By default, SmartEdge nodes will use standardized data model of RDF for representing

intermediate results and data exchange

The toolchain is designed to process semantic data using RDF data model.

ID/Ver: LC-002/v1.2 Related Use Case(s): UC-2, UC-3, UC-4, UC-5 Task: T5.4

The low-code programming toolchain should provide a DSL to programmatically generate some

basic template for building Recipes towards drag and drop functionality and minimal

programming.

ID/Ver: LC-003/v1.2 Related Use Case(s): UC-2, UC-3, UC-4 Task: T5.4

The low-code programming toolchain should be able to store the created Recipes in RDF format

ID/Ver: LC-010/v1.1 Related Use Case(s): UC-2, UC-3, UC4 Task: T5.4

Low-code platform should support code generation required for execution of a recipe (both

interactions between the devices/communication, and device's logic).

Mendix plugins provided by T5.4 will fulfill these requirements.

ID/Ver: LC-011/v1.1 Related Use Case(s): UC-2, UC-3, UC-5 Task: 5.4

Functionality should be configurable for filtering data/creating events by using stream from

single node. For example, option zone safety functionality (number of vehicles in certain area

at certain time) should be easily configured to new nodes, or health biomarker data stream by

the logical indicator processor.

ID/Ver: LC-012/v1.1 Related Use Case(s): UC-2, UC-3 Task: T5.4

Functionality should be configurable for filtering data/creating events by using stream from

multiple devices. For example, red runner detections should be configurable to devices

(combines data from signal controller and radar). This would be an extension of LC-011 (only

operating in single node)

ID/Ver: LC-013/v1.1 Related Use Case(s): UC-2 Task: T5.4

There should be the possibility for configuring automatically/semi automatically parameters

for device sensors and how to perform the functionality such as LC-011 and LC-012 and other

simple manipulation of data.

T5.4 will implement stream query operator as SmartEdge primitive which will do the

computation required by these requirements.

ID/Ver: LC-016/v1.1 Related Use Case(s): UC-3, UC-5 Task: T5.3 & T.54

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

96

The low-code platform should provide a mechanism to define recipes that will be instantiated

as applications and run by one of more smart-nodes in the swarm.

T5.4 provides a Semantic Programming model that allows to describe recipes as semantic

programs. The orchestrator will decide if the program will be run on one smart node or

several smart nodes.

ID/Ver: LC-024v2.1 Related Use Case(s): UC-1, UC-2, UC-3, UC-4, UC-5 Task: 5.4

SmartEdge should provide a user interface that allows a user to check the current state. For

example, available nodes and available sensors and actuators including their available status

and value ranges.

Users can check the current state by sending query the DKG of any smart node of a swarm.

ID/Ver: CSI-001/v1.1 Related Use Case(s): UC-1, UC-2, UC-3, UC-4, UC-5 Task: T5.4

SmartEdge must provide a mechanism so that (swarm) devices (e.g. vehicles) can receive

information from the environment.

SmartEdge Runtime will collect information from environment

ID/Ver: CSI-006/v1.1 Related Use Case(s): UC-1, UC-3 Task: T5.4

SmartEdge must provide a semantic reasoner for verification of situations in video stills or

streams with respect to applicable rules that must be followed based on the detected

situations.

The semantic program resolver will work a reasoner.

ID/Ver: CSI-007/v1.1 Related Use Case(s): UC-2, UC-3, UC-5 Task: T5.4

Information about all the available data sources/sensors and actuators present should be

available at all times. This is somewhat similar to SW-007 for edge nodes, but in this case, we

are talking about units within each node.

ID/Ver: CSI-008/v1.1 Related Use Case(s): UC-2, UC-3, UC-5 Task: T5.4

We should have availability of static information about the environment in standardized

format. That is, there should be a way to check physical parameters in the field (e.g., in UC-2

the location of lanes, what is their logical connection, what lanes are controlled by what signal

heads, in UC-5 the status and location of a person indoors/outdoors, air quality).

ID/Ver: CSI-009/v1.1 Related Use Case(s): UC-2 Task: T5.4

As extension of CSI-008 regarding variable environmental data (e.g., how long are the queues,

the detected vehicles represent) for detected objects and other dynamic data (traffic controller

statuses) have to be available at all times.

The information will be described in RDF and maintained in DKG as presented in Section 5.4.1

ID/Ver: CSI-020/v1.2 Related Use Case(s): UC-3 Task: T5.4

By virtue of CSI-018 a recipe must know the primitives necessary to execute the application on

a swarm. A mechanism must exist to match up the primitives to the characteristics of possible

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

97

nodes in the swarm, and in this way define the types of nodes that will be required by a swarm

to execute an application.

The semantic program will include information of the necessary primitives to execute the

program.

ID/Ver: LC-022/v1.1 Related Use Case(s): UC-2 Task: 5.4

There should be an interface for devices for configuring/adjusting parameters at run time

The SmartEdge Runtime will allow the reconfiguration parameters for SmartEdge primitives.

ID/Ver: CSI-026/v2.1 Related Use Case(s): UC-1 Task: 5.4

It must be possible to semantically bind physical devices with virtual devices. (For example, to

represent a digital twin with its real-world counterpart including its state).

Several SmartEdge connectors and adapters will allow this binding feature

ID/Ver: CSI-027/v1.1 Related Use Case(s): UC-1 Task: 5.4

A binding between real devices and 3D Assets which are used in virtual environments should

be possible to automatically react to state changes of the asset or the real device (low code).

Several SmartEdge connectors and adapters will allow this interaction.

5.3 PRELIMINARIES AND STAGE OF THE ART

5.3.1 Object Detections for Edge Devices
In the context of D5.1, object detection is the core model to localize the objects in the video

scenes to build scene understanding in T5.1. With the focus on making object detection, and

data fusion in general, to work on edge device, this section delves into the realm of object

detection on edge devices, with a specific focus on profiling the inference speed of Deep Neural

Networks (DDN) deployed on the NVIDIA Jetson family. The profiling of these devices,

encompassing the Jetson Nano, TX2, Xavier, and Jetson Orin, becomes a crucial basis of achieving

the KPI K4.1 (also related to K4.2 and K4.5) and are integral to the successful integration of

NVIDIA's Jetson family, serving as key components in the execution of Use Cases 2 and 3 (UC2

and UC3) within the project. Meanwhile, Object detection is an important computer vision task

with applications in autonomous vehicles, surveillance, robotics, etc. Performing accurate object

detection on resource-constrained edge devices, such as jetson series devices, is challenging but

critical for deploying these applications. Based on this, D5.1 aims to contribute actionable

knowledge for the strategic utilization of these devices in the project's real-world applications.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

98

 Jetson Nano

Jetson TX2

Jetson Xavier

Jetson Orin

CPU 4-Core ARM A57

@ 1.43GHz

4-Core ARM A57
@2.0 GHz
2-Core Denver2
@2.0GHz

8-Core Carmel ARM v8.2
@2.26 GHz

12-Core ARM-A78AE
@2.2 GHz

RAM 4GB
64-bit LPDDR4
1600 MHz
25.6 GB/s

8GB
128-bit LPDDR4
1866 MHz
59.7 GB/s

32 GB
256-bit LPDDR4x
2133 MHz
136 GB/s

64GB
256-bit LPDDR5
3200 MHz
204.8 GB/s

GPU 128-core
Maxwell GPU
4GB vRAM
472 GFLOPS

256-core
Pascal GPU
x8GB vRAM
1.33 TFLOPS

512-core
Volta GPU
32GB vRAM
32 TOPS

2048-core
Ampere GPU
64 GB vRAM
275 TOPS

Table 1. List of Technical Specifications for Jetson series devices.

The Jetson series contains embedded systems with varying levels of computing capability, power

consumption, and form factors. As shown in Table 1, the Jetson Nano is the lowest power device

at 5-10 Watts, followed by the Jetson TX2 at 7.5-15 Watts. The Jetson AGX Xavier has much

greater performance with 30-32 TOPS but higher power consumption from 10-30 Watts. Hence,

there is a tradeoff between power and performance based on the specific application

requirements.

In object detection, 2D object detectors take images as input and output 2D bounding boxes with

classwise predictions. They can serve as real-time detectors but are limited to the image plane

and usually without environmental depth perception. In contrast, 3D object detectors take point

clouds from sensors like LiDAR as input and output 3D bounding boxes enabling a richer

perception of the environment. Most frameworks utilize DNN consisting of feature extraction

layers followed by prediction heads. Two-stage detectors like Faster R-CNN (FRCNN) (2D) and

PointRCNN (3D) have higher accuracy but are slower compared to one-stage detectors like YOLO

(2D) and PointPillars (3D) which prioritize speed. Besides, one-stage detectors (YOLO, DETR) now

have precision rivaling two-stage models (FRCNN, SSD). However, both approaches incur

significant computational expenses unsuitable for resource-constrained edge devices without

optimization. Hence, the direction to decrease the power consumption including neural

architecture search (NAS) to find optimized networks, model compression via quantization and

pruning, hardware-aware optimization using specialized AI accelerators, and leveraging 2D

detectors to generate 3D detections without expensive 3D convolutions, enabling real-time

performance.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

99

Figure 5-1 Profiling YOLO-series models on Jetson AGX Xavier.

To investigate the performances of jetson series devices on detection models, we profiled YOLO

series models on Jetson AGX Xavier, the experimental setup involved a consistent input

resolution of 640x640 pixels. For each model, a warm-up phase of 50 iterations was conducted,

followed by 1000 iterations to assess performance. The metrics of interest were frames per

second (fps) to gauge inference speed and the number of parameters (in millions, M) to

investigate how the model complexity will influence the inference speed on edge devices.

As shown in Figure 5-1, in terms of inference speed, YOLOV6 led with 71.4 fps, closely followed

by YOLOV8 at 65.4 fps. These models showed an excellent balance of inference speed and

efficiency, particularly in their Normal size (N). Besides, YOLOV5, a widely recognized variant of

YOLO series model, performed reasonably well, with its N variant achieving 69.0 fps. In contrast,

YOLOV7 exhibited the lowest fps rates, with YOLOV7-N achieving only 11.52 fps, and its YOLOV7-

X variant at 6.9 fps, indicating a significant trade-off between complexity and speed.

Params (mAP)

Model
N S M L X

YOLOV5
1.9M

(28.0)
7.2M (37.4)

21.2M （45.4

）

46.5M （

49.0)

86.7M （

50.7）

YOLOV5Lite - 5.4M (39.1) - - -

YOLOV6 - 4.7M (37.5) 18.5M (45.0) - -

YOLOV7 - - - 36.9M (51.4)
71.3M

(53.1)

YOLOX - 9.0M (40.5) 25.3M (46.5)
54.2M

(49.7M)

99.1M

(51.1)

YOLOV8
3.2M

(37.3)
11.2M (44.9) 25.9M (50.2) 43.7M (52.9)

68.2M

(53.9)

Table 2 Model Size and Performance on MS-COCO [Lin14] Benchmark.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

100

Regarding parameter size, YOLOV8-N was the most parameter-efficient with only 3.2M

parameters, while YOLOX-X was with 99.1M parameters. It is noteworthy that YOLOV8 not only

excelled in inference speed but also maintained a lower parameter count across all variants,

suggesting an optimized architecture for edge devices like the Jetson Xavier. It indicates that

there is a general trade-off between inference speed and model complexity across different

YOLO versions and their variants. Light models with fewer parameters tend to infer faster, as

seen in YOLOV6-N and YOLOV8-N, making them more suitable for real-time applications where

latency is crucial. On the other hand, models with more parameters, like YOLOV8-L and YOLOV8-

L-X, are better suited for scenarios where accuracy is prioritized over inference speed. More

details about model sizes and their corresponding performances on MS-COCO [Lin14]

benchmark is shown in Table 2.

Hence, the choice of a deployable model on Jetson series edge devices such as Jetson Xavier

should be primarily guided by the specific requirements for inference speed versus model

complexity, devices computing power. Models like YOLOV6 and YOLOV8 appear to offer a more

balanced profile for edge computing environments, providing a good compromise between

inference speed and model size.

5.3.2 Preliminary results for Semantic Programming for edge computing

Figure 5-2 Profiling edge performance according to diver number of cameras.

This section presents the initial implementation of our case study on a distributed camera

network aimed towards UC2. This network is constructed based on the data provided by the AI

City Challenge (AIC) [Naphade19]. The AIC encompasses 40 cameras spanning across 10

intersections in a mid-sized US city. The baseline used for comparing the efficiency and

scalability of the SmartEdge swarm is the traditional device-cloud infrastructure. This

infrastructure ingests data from the 40 cameras connected by 40 roadside units (RSUs) into a

centralized server, represented by the red node as shown in Figure 5-2. The red node serves as

a powerful server equipped with 2 Intel Xeon Silver 4114 Processors, 1TB RAM, and V100 GPU

cards with 16GB, symbolizing a cloud infrastructure. In this configuration, the red node manages

all the workload of the MMOT program, including its SORT and DeepSORT algorithms. An RSU

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

101

operates on a Raspberry Pi 3 Model B, utilized solely for encoding and decoding video streams

from its attached camera in this baseline. To simulate camera streams, we employed these RSUs

to replay the recorded data from AIC at a speed of 10 frames per second (fps) for each camera.

Next, the setup involves adding 8 Jetson Nanos to the device-cloud setup to offload the heavy

processing load of DNN-based object detections. This augmented device-cloud setup is referred

to as device-edge-cloud. We utilize the Yolov5 pre-trained model for both device-cloud and

device-edge-cloud configurations. A group of RSUs will be connected to a Jeton Nano via a wired

network if they are geographically collocated to an intersection. When an MMOT is registered

to the central server (the red node in Figure 5-2), it delegates some subtasks to the blue nodes

representing Jetson Nano devices. For example, subtasks on object detection and tracking are

specified in line 9 and line 10 of Listing 5. As depicted in the graph in Figure 5-2, when the

number of RSUs exceeds 10, they outperform a device-cloud counterpart in terms of latency.

It's important to note that, although device-edge-cloud has more processing power than device-

cloud, adding one more communication hop to the network topology will introduce more delay

if the red node is not overloaded in terms of processing or bandwidth. However, for the heaviest

operation Yolov5, a V100 can process 100-250 fps, while each Jetson Nano can process 10-25

fps. Consequently, the benefits of having edge nodes become more apparent when there is a

higher processing load and network demand, such as streaming from more than 10 cameras.

This indicates the direction towards achieving the necessary performance and scalability while

being able to build the system in a low-code fashion with semantic programming introduced

below.

5.4 MODEL AND DESIGN

5.4.1 Semantic Programming Model for Low-code Programming
This section introduces the Semantic Programming (SP) paradigm for building and deploying

applications on edge-cloud continuum, which is geared towards the integration of multimodal

data. The inspiration for SP is drawn from the intricate interplay between the semantic and

episodic memory systems observed in the human brain. Semantic memory represents the

brain's reservoir of general world knowledge, while episodic memory is akin to a mental archive

that encodes, stores, and facilitates the retrieval of personal experiences embedded in distinct

spatial and temporal contexts.

The fundamental idea behind SP is to emulate these cognitive processes within programming,

with the overarching goal of reducing coding complexity by leveraging semantic knowledge in

tandem with human cognitive principles. Unlike conventional programming approaches that

heavily rely on rigid algorithms and explicit instructions, SP encourages the design of programs

that can manipulate and comprehend information based on its semantic symbols. By doing so,

SP introduces a more flexible and intuitive programming paradigm that aligns with the nuanced

way human cognition processes and understands data.

Our programming model not only capitalizes on these cognitive principles but also integrates

them with the concept of declarative programming. In traditional programming paradigms,

declarative programming involves specifying what a program should achieve rather than

explicitly detailing how to achieve it. By incorporating declarative programming into SP, the

paradigm seeks to create a more intuitive and human-like interaction with data. Programs are

crafted to articulate the desired outcomes, allowing the underlying system to infer the most

efficient means of achieving those objectives based on semantic knowledge. This departure

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

102

from rigid algorithms not only reduces coding effort but also enhances adaptability, enabling

programs to dynamically respond to diverse data inputs.

In essence, SP, with its integration of declarative programming, represents a paradigm shift in

the way we approach information processing. It not only mirrors the cognitive intricacies of the

human brain but also introduces a more flexible and responsive programming model. This

synthesis of declarative programming and semantic knowledge positions SP as a promising

avenue for advancing multimodal data fusion, offering a holistic framework that aligns closely

with the nuanced and associative nature of human cognition.

5.4.1.1 Semantic Program
The Semantic Program (SP) is conceived as a structured set of rules derived from semantic data.

These rules are articulated using the CQELS-RL syntax, an extension derived from CQEL-QL and

SHACL. The formal semantics of SSR, as outlined in [Danh21], delineate the program into two

fundamental rule types: hard rules and soft rules.

Hard rules, grounded in non-monotonic common-sense and domain knowledge, serve as a

bedrock of background information considered "always true." The hard rules within the

Semantic Program represent strict guidelines or constraints that must be adhered to without

exception. These rules contribute essential contextual knowledge to the semantic program.

In contrast, soft rules encapsulate association hypotheses, with each hypothesis assigned a

weight corresponding to its probability degree. This nuanced approach enables the Semantic

Program (SP) to accommodate varying degrees of certainty or likelihood within its reasoning

process. By assigning weights to these hypotheses based on their respective probabilities, the

SP can effectively weigh and prioritize different potential outcomes or interpretations.

Essentially, soft rules provide a mechanism for the SP to incorporate probabilistic reasoning into

its decision-making process, enriching its capability to handle complex semantic relationships

and scenarios.

Figure 5-3 Example of a semantic program which reasons if an object enters field of view of a camera.

In the context of UC2, the task involves computing the queue length, which requires the

detection of a car entering the field of view (FOV) of a camera. The semantic program depicted

in Figure 5-3 serves the purpose of updating information when a car enters the camera's FOV.

Within this program, the STREAM keyword is used to indicate the source of input data and where

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

103

the results will be directed. For instance, Line 7 specifies that the input data originates from a

smart node executing data stream fusion operations.

To facilitate this data exchange, the SmartEdge Runtime (as detailed in Section 5.4.2.2) must

subscribe to the topic described in Line 6 to receive object detection results. The combination

of the CONSTRUCT keyword and subsequent lines (3, 4, and 5) outlines how the results will be

structured and returned, specifying the topic as "smart-node1/sp01/". By manipulating

endpoints associated with the STREAM keyword, the orchestrator can establish links and guide

the flow of data within a SmartEdge swarm.

Moreover, Line 16 introduces the FILTER operation, which can be viewed as a simple soft rule

within the program. The confidence score associated with this operation serves as an adjustable

parameter, allowing optimization techniques detailed in Section 5.3 to ensure program

efficiency and reliable results. By dynamically adjusting the confidence score, the optimizer

optimizes the program's performance, ultimately enhancing its effectiveness in processing and

analyzing data.

5.4.1.2 Semantic Data Model
To establish a meaningful link between programming elements and semantic symbols that can

be understood by both humans and machines, we adopt the RDF-based model of Semantic

Streams. This conceptual framework utilizes RDF (Resource Description Framework) to

represent sensory streams. For instance, consider a scenario where a video data stream,

recorded by a camera, is treated as a sequence of symbolic observations symbolizing individual

video frames. To illustrate, Errore. L'origine riferimento non è stata trovata. provides an

example of how a frame captured from Camera 160, deployed at Junction 270 in Helsinki (UC2),

is represented in RDF using the Semantic Observations, Samples, and Actuations (SOSA)

ontology.

Figure 5-4. Example of data schema to describe relationships of camera, object detections and object detection

results

Regarding the semantic data schema extended for SOSA ontology, illustrated in Figure 5-4, the

traffic camera is conceptualized as a sensor, and the camera's field of view is modelled as its

feature of interest. Specifically, the RDF representation indicates that the field of view of Camera

160 encompasses the road 270.280.Vaelimerenktu, connecting to Junction 270. These frames

are then modeled as instances of the SOSA Observation class, resulting in 2D images that

encapsulate the visual information captured by the camera.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

104

Figure 5-5. Example of a semantic stream snapshot of camera frame captured from camera 160 deployed at junction

270

The detection of a video frame is symbolized within SOSA ontology as a SOSA:Sampling. This

sampling operation yields multiple detection results, essentially serving as samples derived from

the 2D image (denoted as Image2D) extracted from the video frame. These detection results

specifically pertain to identified objects, referred to as traffic participants, positioned within the

traffic area corresponding to the camera's field of view.

The engine responsible for object detection is conceptualized as a SOSA:Sampler. This sampler,

acting as an object detection engine, implements a specific detection algorithm—illustratively

mentioned here as a DDN-based (Deep Neural Network-based) object detection algorithm. The

SOSA ontology is used to classify and model these components within a semantic framework,

enabling a clear understanding of their roles and relationships. Additionally, the temporal

context of the detection process is captured through the property SOSA:resultTime, which

denotes both the timestamp of the video frame and the moment at which the detection of

objects within that frame occurred. This temporal information is crucial for establishing the

chronological order of events and associating detected objects with specific instances in time,

providing a comprehensive understanding of the spatiotemporal dynamics of the observed

traffic scenario.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

105

Figure 5-6. Example Semantic Streams produced by an object detection

Figure 5-6 presents a snapshot of semantic stream data, showcasing the object detection results

of the frame depicted in Figure 5-5. Within this snapshot, the green boxes detected bounding

boxes, indicating the presence and location of objects within the scene. The RDF representation

indicates that the object detector is implemented with YoloV8[]. The object detection of

image01 yields two results: the first box represents a car with a confidence score of 0.76, and

the second box represents a truck with a confidence score of 0.96.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

106

5.4.1.2.1 Semantic data model for Traffic (UC1 and UC2)

In this domain-specific Smart Traffic ontology, the hierarchy and relations between elements are

as follows: A city encompasses a road network comprising junctions and road segments. Each

road segment contains one or more lanes, with each lane potentially categorized by type (such

as cars, trams, buses, or truck-only lanes). Lanes may also be associated with individual

junctions. Each road segment serves as a link connecting two junctions. However, each junction

may function as a connecting point for two or more road segments. Lanes can be connected

to other lanes at a junction.

Figure 5-7. Core concepts of Smart Traffic data schema

Figure 5-7. Core concepts of Smart Traffic data schemaFigure 5-7 depicts the Traffic ontology

utilized in both UC1 and UC2 scenarios. In this ontology, a traffic area denotes a location where

traffic activities occur. Examples of traffic areas include road segments and junctions. A traffic

link serves as a connection between two traffic areas. Notably, a road segment also functions as

a traffic link, facilitating the connection between two junctions. Within our model, we

conceptualize the traffic link as a relational entity linking two traffic areas together.

Figure 5-8 gives a snapshot of the semantic description associated with the road segment

connecting to junction 270 within the deployment site in Helsinki (UC2). The full map of the

deployment site is visually presented in Figure 5-9. Junction 270 is visually highlighted by a green

circle on the map, distinguishing it as a significant point within the transportation network. Lines

10 to 12 of the semantic description elucidate that Junction 300 establishes a connection with

Junction 270 via the road segment identified as

http://fi.helsinki/map/roadsegment/fi.helsinki.300.270.Vaelimerenkatu.

Figure 5-8. . A snapshot of semantic description of a road segment connected to Junction 270 in Turtle format

http://fi.helsinki/map/roadsegment/fi.helsinki.300.270.Vaelimerenkatu

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

107

Figure 5-9. SPARQL query to find all road segments connect two Junction using property path.

With our sophisticated data model, we possess the capability to identify and extract all the links

connecting two distinct traffic areas on a map. As an example, consider the top portion of Figure

5-9, which delineates the road network infrastructure of the deployment site earmarked for the

UC2 implementation in Helsinki. Utilizing our data model's robust features, we can employ a

SPARQL query to systematically list all the road segments that establish a connection between

Junction 267 and Junction 270. This capability is made possible by leveraging the properties path

feature provided by SPARQL, enabling us to navigate and query complex network structures with

ease and precision.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

108

Figure 5-10. Lane layout at Junction 270 in Helsinki serves as an example.

Before presenting the relationship between Lanes, Road Segments, and Junctions, let us

introduce the lanes outlined within a junction. For example, Junction 270, as shown in Figure

5-10. A road segment typically comprises multiple lanes, each designated for specific types of

traffic participation, such as vehicles (blue lanes) or trams (green lanes). Each lane originates at

a junction and terminates at the next junction. Arrows connecting lanes represent connections

between two lanes crossing a junction. These relationships are illustrated in Figure 5-11.

Figure 5-11. The relationships between Lane, Junction and Connecting Lane

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

109

5.4.1.2.2 Semantic SLAM (UC 3 and UC4)
Next, we introduce another form of Semantic Streams, Semantic SLAM (Simultaneous

Localization and Mapping. In UC2 and UC4, SLAM is a technique that allows robots to create and

update a map of an unknown environment while estimating their own location within it. SLAM

is essential for many applications that require autonomous navigation. The problems and

challenges associated with it have been described in UC3 for the robots on factory floors.

However, SLAM poses several challenges, such as dealing with noisy and incomplete sensor

data, maintaining consistency and accuracy of the map, and scaling to large and dynamic

environments.

One way to address these challenges is to use semantic information to enrich the SLAM process

via Semantic SLAM. Semantic information refers to the meaning and context of the entities and

relations in the environment, such as objects, places, events, or actions Semantic SLAM can help

robots to identify and classify the elements of the map, to reason about their properties and

behaviors, and to communicate and cooperate with other robots or humans.

5.4.1.2.2.1 RDFize ROS-based SLAM data structures into Semantic Streams
To transform ROS-based SLAM data structure of SmartEdge’s Semantic Data model, we first map

2D/3D map data elements in C-structure into corresponding RDF types.

▪ 2D SLAM Maps. In ROS2, Occupancy Grid is used to represent a 2D occupancy grid map.

The map is represented as a 2D array of integers, where each integer represents the

probability that a cell is occupied by an obstacle.

▪ 3D SLAM Maps. OctoMap [Hornung13] is used to represent a 3D occupancy grid map.

The map is represented as a 3D voxel grid, where each voxel is either occupied or

unoccupied. In addition to OctoMap, Point Cloud is another way to represent a 3D SLAM

map. A point cloud is a collection of points in space, each of which has a position and a

color. Both OctoMap and Point Cloud are widely used data structures for representing

3D SLAM maps.

To RDFize the SLAM map and elements, we first need to define the RDF ontology by determine

the key concepts and entities within SLAM map data, such as maps, landmarks, robot poses, and

occupancy information, then create RDF classes and properties based on ROS data format. The

Figure 5-12 is samples ontology that represent the data type of 2D SLAM map (Occupancy Grid)

and its components.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

110

Figure 5-12. Occupancy Grid represents a 2-D grid map.

Once we have the ontology, we could start mapping the SLAM data to RDF. It requires to create

a mapping between the fields of SLAM data (e.g., grid cells, landmarks, poses) and corresponding

RDF classes and properties defined in the ontology. After that, the data could be transformed to

RDF triples format for representation, storage, and querying using Semantic Web technologies.

By RDFizing the ROS-based SLAM data structure, we can make it interoperable with other RDF

data sources and enable semantic queries and reasoning over it.

5.4.1.2.2.2 Link Semantic Types of Spatial Objects
Spatial objects are physical entities existing in the robot's environment that the robot interacts

with or perceives. Spatial objects can be used to describe and classify the elements of a SLAM

map, such as objects, places, landmarks, or trajectories. These objects can have various shapes,

sizes, and materials. Understanding and modeling spatial objects accurately is crucial for robots

to perform tasks effectively and safely in real-world environments. This involves techniques such

as sensor fusion, simultaneous localization and mapping (SLAM), object recognition, and scene

understanding in this SmartEdge project.

In this work, we depict spatial objects within the semantic map using a 2D SLAM map, also

known as occupancy grid maps, along with their components. A semantic map allows us to

represent and manipulate various objects in the environment, such as furniture, doors, or

obstacles. To link the semantic types of spatial objects to the map, we assign semantic labels to

the cells of the occupancy map, in that way, we can identify and classify the objects, and query

their properties and relations. Overall, a semantic map can provide a high-level and abstract

view of the environment and facilitate the understanding and communication of the robot and

the human.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

111

Figure 5-13. Semantic SLAM. Camera stream (left) and Occupancy Grid map (right) with object detection

Figure 5-13 showcases a robot constructing a Semantic SLAM map using an RGB-D camera. On

the left side of the firgure, there's a live video feed from the camera showing the environment

clearly. On the right side, there's a map called the Occupancy Grid Map, created using depth

sensor data and IMU data. Each square cell in the map shows if that space is free (white), blocked

by obstacles (black), or unexplored (dark green).

The camera's data is crucial for the system, serving as its main source of information. It used to

analyzes the data to get the semantic meaning for the robot to understand the environment

better. The camera feed into a perception module that perform objects detection (Figure 5-13

bottom left) using ML model mentioned in section 5.3.1 such as using YOLO [Redmon15],

DEtection TRansformer (DETR) [Carion20] and perform segmentation (Figure 5-13 upper left)

using ML models such as Segment Anything Model [Kirillov23], Grounded SAM [Ren24] to get

the semantic category of the spatial objects and figure out the location of the objects in the

environment. Then, this information is used to update the Occupancy Grid Map. This create

semantic meaning for the map, giving the robot a deeper understanding of its surroundings.

With this knowledge, the robot can navigate smarter, make better decisions, and interact with

its environment more effectively.

5.4.1.2.2.3 Continuous Queries over Semantic SLAM
To query and manipulate objects within the semantic map, we need to use a query language

that can access and manipulate RDF data, such as SPARQL, a standard for querying and updating

RDF graphs. SPARQL allows us to express patterns of RDF triples, and to apply filters, operators,

and functions to them.

A continuous query is a query that is executed repeatedly over a stream of data and produces a

stream of results that reflect the changes in the data. In this usecase, the robot is continue scan

the environment and updating the map continuously, so that the robot need to get the latest

information to make a decision for tasks such as path planing and navigation.

Consider a robot that is navigating a cluttered warehouse. The robot has an RGB-D camera that

it uses to scan the environment and generate a probability occupancy grid. The robot starts at a

known location and scans the environment in front of it. As it scans, it updates the probability

occupancy grid, assigning higher probability values to cells that are likely to be occupied and

lower probability values to cells that are likely to be free. During the mapping process, in

conjunction with spatial objects information, the system constructs the semantic map using the

techniques described above, making it ready for querying and manipulation. For example, the

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

112

Figure 5-14 show an idea query Errore. L'origine riferimento non è stata trovata.that find all

the free cells from the Semantic SLAM map that will be used as the input for path planning tasks.

Figure 5-14. Sample SPARQL query for path planing

5.4.2 Integrate/deploy/build toolchain into execution target/environments.

5.4.2.1 Ontology-driven Design for Cross-Layer Toolchain
Figure 5-15 illustrates the overview of designed components of SmartEdge toolchain.

Application specification is compiled into semantic program which is sent to the SmartEdge

orchestrator and optimiser developed in T5.3. The core of the toolchain is the SmartEdge

Runtime executes primitive processing operators to serve the domain-specific applications. The

SmartEdge processing primitives include two types operators, namely Graph Stream Query

Operators (cf Section 5.4.3.1) and Tensor Computations (cf. Section5.4.3.2). These operators

provide the core primitives for Multimodal Stream Fusion operations developed in T5.1 (cf.

Section 2). To implement such operations, there are several software components needed to be

integrated and abstracted as described in Section 5.4.2.

The Network Ops are facilitated by SmartEdge network components developed in WP4 (c.f

D4.1). Based on such Network Ops, a set of Plugins and a set of Connectors are provided in

Section 5.4.4 and Section 5.4.5 respectively. These Plugins and Connectors help lower the effort

of UC developers in integrating lower-layer components as well as wiring different components

to domain-specific application logics.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

113

Figure 5-15. Overview of component design of SmartEdge low code toolchain

The first step in building such a toolchain is extending the schema defined in WP3 to

accommodate vocabularies needed to model attributes and features (e.g connecte sensor,

CPU/GPU, host OS) of runtime deployment context under an ontology, called Execution Context

Ontology (ECO). Then, ECO must be extended further to link with technical aspects (e.g, network

interfaces, targeted P4 runtimes) of WP4 as well as components provided for it. Also, semantic

description of data fusion to be developed in T5.1 will be incorporated in runtime toolchain

configuration. With provided vocabularies, T5.4 will be working with UC partners to populate

instances based on concepts and attributes to expand ECO further in D5.2 and D5.3 as the

implementations of UCs progress until the end of SmartEdge or even beyond. For example, all

desired configurations towards the expected demonstrations in Helsinki will be described and

instantiated to compile small-scale lab deployments with similar hardware at TUB to do

performance profiling and tuning to choose the best potential artifacts before doing field tests

in Helsinki. A similar process can be built to run on robotic simulations in UC3 in development

phase, which can then be implemented in field tests in the Dell manufacturing lab.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

114

Figure 5-16. Execution Context Ontology extended from SmartEdge Schema from D3.1

5.4.2.2 SmartEdge Runtime
The SmartEdge Runtime (SRt) serves as a critical component hosted within the infrastructure of

SmartEdge smart-nodes. Its primary function is to provide a suite of advanced functionalities

that empower a smart-node to effectively contribute to a larger swarm network. Specifically,

SRt enables the execution of semantic programs by managing and executing the runtime of

primitive operations declared within these programs. These operations encompass a wide range

of tasks, including data fusion, stream query operations, and tensor computations specified in

Section 2 and 5.4.3.

One of the key strengths of SRt lies in its seamless integration capabilities. It effortlessly

interfaces with a variety of companion processes, including companion runtimes such as P4

Runtime, and plugins designed to enhance the network’s functionalities. Additionally, SR is

designed to interface with remote processes via protocols like DDS and UPC-UA, further

extending its reach and interoperability.

The processing state and configuration details are meticulously tracked and maintained within

SRt's Distributed Knowledge Graph (DKG). This centralized repository ensures that the system

remains coherent and can be efficiently managed. Moreover, SR leverages peer-to-peer (P2P)

data querying and federation mechanisms, enabling nodes to cross-reference and query states

stored within the DKGs of their peer nodes. This capability enhances the system's resilience and

scalability, facilitating seamless communication and coordination across the swarm network.

Figure 5-17 delineates the architectural blueprint of the SmartEdge Runtime (SR), elucidating its

fundamental components and their specialized functions. Positioned atop SR is the Message

Manager, acting as a pivotal ingress point for control messages and request messages originating

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

115

from disparate system components. These messages encompass a gamut of communication

types, including state request messages aimed at soliciting real-time status updates from SR or

dispatching operational directives.

At the heart of SR lies the State Manager, orchestrating the dynamic upkeep of a smart node's

operational state. This entails disseminating critical node availability data and prognosticating

state transitions, such as the potential disengagement of a smart-node from the swarm in

response to spatial reconfigurations. Simultaneously, the Hardware Manager assumes

responsibility for overseeing the entire hardware inventory within the smart node's purview.

During the bootstrapping phase, it meticulously scans hardware specifications, transmuting

them into RDF format, and archives them within the Distributed Knowledge Graph (DKG) for

subsequent reference and management.

Figure 5-17. Component design or SmartEdge Runtime

The Context Manager is tasked with curating and managing environmental insights pertinent to

the node's operational milieu. It interfaces seamlessly with deployed sensor arrays, assimilating

and updating sensor-derived data within the Distributed Knowledge Graph (DKG). This data

serves as a linchpin for predictive analytics within the system, enabling the State Manager to

forecast node states with heightened accuracy.

The Primitive Runtime (PRt) Manager assumes a pivotal role in the SR ecosystem, overseeing

the deployment, execution, and maintenance of primitive executables. Operating in tandem,

the Primitive Executor leverages semantically annotated executable requirements sourced from

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

116

the DKG, creating bespoke virtual environments tailored to each execution instance. These

environments ensure consistent runtime execution conditions, facilitating robust and

reproducible outcomes across successive executions.

Simultaneously, the Input Handler serves as a conduit for managing data ingress to fuel primitive

operations. It discerns and employs appropriate communication protocols to interface with

diverse data sources, ensuring seamless data acquisition. Conversely, the Output Handler

marshals computation results emanating from primitive executions, furnishing actionable

insights for downstream processing.

Augmenting SR's capabilities are the Resource Allocator and Performance Monitor, interfacing

seamlessly with the Primitive Runtime Manager. The Resource Allocator orchestrates the

judicious allocation of computational resources, optimizing parameters such as RAM allocation

and CPU core provisioning. Concurrently, the Performance Monitor meticulously records

runtime performance metrics, offering granular insights into operational efficiencies. These

components synergize with the Optimizer module to dynamically recalibrate resource allocation

strategies in response to evolving performance metrics, ensuring optimal operational efficacy

within the SR ecosystem.

A Runtime can be packaged in several distinct configurations to cater to varying deployment

requirements:

• Lightweight Version: For simple or resource-constrained environments, a lightweight

version of the Runtime can be packaged to run within a Java Virtual Machine (JVM). This

version offers the advantage of easy deployment and compatibility across different

platforms, leveraging the JVM's portability.

• Complex Version with Companion Runtimes or Plugins: In scenarios demanding

advanced functionalities or intricate integrations, a more sophisticated version of the

Runtime can be deployed within a Dockerized environment. This approach enables

encapsulation of the Runtime along with its companion runtimes or plugins within

Docker containers, ensuring isolation and portability across diverse computing

environments.

Within the Dockerized environment, a Knowledge Graph (KG) tailored for the tool chain

facilitates the packaging process. This KG contains metadata pertaining to host environments,

encompassing hardware specifications, sensor configurations, input/output semantics, and

network capabilities. By leveraging this metadata, the packaging process is streamlined, with the

KG guiding the generation of Docker Compose configurations semi-automatically. This semi-

automation minimizes manual intervention and ensures consistency in the deployment process,

enhancing efficiency and reducing deployment overhead.

5.4.2.3 Interactive Active Model training and selection workflow
In this section, we aim to develop an automated low-code training platform, tailored for domain

experts, that focuses on learning on edge devices. Currently, edge devices can help to collect

vast amounts of data. However, training directly with this vast data is slow on edge devices, and

those with lower computational power may not support effective training. Therefore, we plan

to tackle this challenge from two perspectives. First, utilizing active learning, we aim to allow

domain experts to select the most representative data points in each training loop for model

learning. Building on our previous project, VisionKG, we aim to enrich the training corpus by

querying for features closely matching those annotated by domain experts, thereby enhancing

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

117

the training set. To improve generalization ability, we will extract the foundational model from

pre-trained model zoo and leverage transfer learning effects. Then, we will use an interactive

model selection strategy to choose and optimize models based on users' or domain experts'

specific requirements. Self-adaptive and data-centric learning are pivotal in robust computer

vision, and crucial for scenarios like autonomous vehicles and surveillance. Implementing robust

learning pipelines across conditions such as adverse weather and varying illumination is

challenging but essential for deploying trained models. Hence, our goal is to develop a robust,

user-friendly low-code training platform for real-world applications, enabling the selection of the

most representative data/model based on domain knowledge from target users. We will begin

with VisionKG, which can organize, manage, and access visual datasets, and automate

training/evaluation pipelines for computer vision applications using knowledge graphs and

Semantic Web technologies. A unified schema in VisionKG enables efficient data retrieval and

querying using both SPARQL and natural language, facilitated by large language models. Drawing

on [Anh21, Kien21, Jicheng23], we will enhance its capabilities for better integration with active

learning, focusing on model training and selection through advanced semantic analysis,

continuous learning, and model adaptation. This effort seeks to create robust visual recognition

systems, enhance semantic interpretations, and support an efficient, interactive model training

and selection in a data-centric approach.

Initially, VisionKG follows Linked Data principles and FAIR data guidelines to enhance the

findability, accessibility, interoperability, and reuse of the integrated datasets. It offers three

main capabilities to improve model training workflows:

Figure 5-18 Overview of VisionKG Platform

• Unified access visual datasets integrated with active learning loop: Users can query

across datasets using SPARQL to retrieve images and their corresponding annotations

meeting specified criteria, aligned taxonomies via knowledge graph in VisionKG enable

users to curate composite datasets easily.

• Automating robust incremental learning pipelines towards computer vision: With

VisionKG, users can automate data retrieval, preprocessing, model training, evaluation

etc. using integrated Python API and existing model zoo. Employing active learning and

incremental learning, VisionKG can ensure robustness while preserving acquired

knowledge.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

118

• Active model updating and selection via advanced semantics fusion: Diverse data from

VisionKG helps improve model robustness and reduces overfitting to specific scenarios.

Users can create composite datasets as required to enhance robust evaluation under

varying conditions, such as weather, illumination, and contexts. Benefiting from active

learning and feature diversity in VisionKG, even with limited data points in the target

domain, users can effectively transfer learning towards specific user scenarios.

To access datasets via queries, VisionKG offers a SPARQL endpoint and Python API, allowing

queries based on tasks, datasets, categories, licenses, etc. An interactive GUI enables users to

construct queries and visually retrieve images. For instance, as demonstrated in Figure 5-18,

users can retrieve images from various sources, including categories such as person, pedestrian,

and man, all aligned within the visual knowledge graph. Thus, VisionKG's consistent taxonomy

simplifies querying visual data at various specificity levels, easing the combination of

heterogeneous datasets. Starting with a unified data schema and integrated rich data, VisionKG

will incorporate active learning and a composite data selection mechanism, both visual and

semantic. This design aims to identify and prioritize crucial training data samples, focusing on

uncertainty and diversity. After each training round, a feedback mechanism will be introduced,

allowing iterative refinement of data selection criteria and the training loop, aligned with

learning objectives or user needs. Its goal is to accelerate model learning and introduce human-

in-the-loop active learning, positioning VisionKG as a leader in data-driven model training, even

under sparse data or annotation conditions. Based on VisionKG, to realize interactive active

model training, labeling work is performed on the limited target data with the help of knowledge

from domain experts. According to the annotations, the nearest features are retrieved via

SPARQL from built-in feature store in VisionKG as a supplement in the target dataset and serve

to a jointly trained loop. In addition, in each training loop, users can decide whether to increase

the annotated data size in the target domain according to the real-time performance of the

model or remove queried data points from VisionKG, thus realizing the requirements in specific

scenarios with a better generalization ability.

Figure 5-19 Data Querying and Pipeline Constructing via VisionKG

Additionally, VisionKG allows automating training data retrieval and model building by

integrating with ML frameworks like PyTorch, as shown in Figure 5-19. For example, a simple

SPARQL query can retrieve annotated images of cars and persons from various sources. These

can then be fed into an object detection model, such as FRCNN [Shaoqing15], configured with a

desired framework. This automated workflow accelerates experimentation by avoiding

repetitive data-wrangling tasks. Besides, the diversity of datasets in VisionKG helps reduce bias

and overfitting compared to models trained on a single dataset. Users can leverage additional

metadata, as shown in Figure 5-20, such as weather, illumination condition, as well as image

resolution, etc. to create composite datasets with enriched semantic and visual features. For

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

119

instance, users can query cars in rainy nighttime conditions across datasets. Hence, training

models on such adversarial instances benefit from enhancing the model’s robustness to varied

real-world conditions, thus improving model performance on rare-seen scenarios. In this project,

our roadmap includes developing a dynamic system for active model updating and selection. A

critical feature is the feedback loop, where continuous monitoring of model performance guides

updates benefiting from the data diversity in VisionKG and domain knowledge from experts, it

will persistently update models with fruitful data, employing active learning and incremental

learning to ensure adaptation while preserving acquired knowledge, thus keeping the model

effectiveness in specific use scenarios and meeting desired requirements towards diverse visual

tasks.

Figure 5-20 Data Diversity in VisionKG

To date, VisionKG includes 617 million RDF triples describing approximately 61 million entities

from 37 datasets and four popular computer vision tasks, as shown in Figure 5-21. It aims to

optimize the efficiency and effectiveness of the learning process and constitute a low code

end2end platform in machine learning towards computer vision tasks, leading to ease the

learning curve of users and accelerate the robust training pipeline in one stop. Besides, VisionKG

is easily extensible and will empower communities to grow around the provided resources

(unified data schema and fruitful pretrained models) and can serve as a blueprint for many digital

data resources as the functionalities provided are generic and reusable. Furthermore, benefiting

from interactive active model training and selection workflow in VisionKG, users can inject their

own domain knowledge to effectively train models on limited data and edge devices with low-

computing-power according to specific usage scenarios.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

120

Figure 5-21 Statistics of Triples and Entities in VisionKG for Object Detection and

 Image Classification Datasets

5.4.2.4 Abstracting hardware and execution framework for MLOps
The design of SmartEdge Runtime necessitates the utilization of heterogeneous hardware

architectures to address the diverse computational requirements of distributed applications. In

addition to the challenges posed by heterogeneous hardware programming, its Runtime

introduces complexities associated with managing streaming data and sensor fusion. The real-

time nature of edge applications, coupled with the proliferation of sensor data streams,

accentuates the need for efficient data processing and fusion techniques. Moreover, the

dynamic nature of edge environments mandates the ability to seamlessly add or remove

hardware resources at runtime, further complicating the design and optimization of edge

computing systems. This section explores the necessity of heterogeneous hardware

programming for edge intelligence via analysing state-of-the-art approaches, and evaluates

prominent frameworks like OpenCL, TornadoVM, CUDA and oneAPI SYCL DPC++.

Edge computing environments of SmartEdge UCs are characterized by their distributed nature

and proximity to data sources. This proximity offers reduced latency and bandwidth

requirements, making it ideal for real-time data processing and analysis. However, the diverse

nature of edge applications demands a heterogeneous mix of hardware components. From CPUs

and GPUs to FPGAs and ASICs, each hardware type offers unique advantages suited for specific

tasks. Hence, programming such applications poses significant challenges. Traditional software

development models struggle to exploit the full potential of diverse architectures efficiently.

Managing data movement, optimizing performance across different devices, and ensuring

seamless integration are among the primary challenges. State-of-the-art approaches leverage

parallelism, offloading computation to specialized accelerators, and abstracting hardware

complexities through high-level programming models. Types of hardware are considered in

SmartEdge toolchain:

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

121

• Central Processing Units (CPUs): Versatile and suitable for general-purpose computing

tasks. CPUs offer high single-threaded performance but may lack the parallel processing

capabilities required for certain edge applications.

• Graphics Processing Units (GPUs): Excel in parallel processing tasks, making them ideal

for tasks like image and video processing. However, they consume more power

compared to CPUs which necessitates careful consideration in energy-constrained edge

environments.

• Field-Programmable Gate Arrays (FPGAs): Provide flexibility through reconfigurability,

making them suitable for diverse edge applications. FPGAs offer low latency and energy-

efficient acceleration but require specialized expertise for programming. With low

latency and energy-efficient acceleration capabilities, FPGAs are particularly preferred

for tasks demanding real-time processing and optimization.

• Application-Specific Integrated Circuits (ASICs): Custom-built for specific tasks, ASICs

offer unparalleled performance and power efficiency but lack flexibility and adaptability.

However, their lack of flexibility and adaptability may limit their applicability in dynamic

edge computing environments.

Since CUDA and oneAPI are frameworks mainly designed to work specifically with NVIDIA

devices, it would impose limitations on the possibilities of device choice. T5.4 considers open

standard based frameworks such as OpenCL and TornadoVM which is a high-level tool built over

OpenCL.

▪ OpenCL: OpenCL (Open Computing Language) is an open standard for parallel

programming across heterogeneous platforms, enabling developers to harness the

computational power of CPUs, GPUs, and other accelerators [Munshi09]. It uses the

CPU-based host device to manage the application run on a target device. OpenCL offers

fine-grained control over hardware computational resources and memory

management. It requires expertise from the developer to be able to construct the

application by following OpenCL development paradigms and to handle all intricacies

steaming from a heterogeneous development environment. OpenCL offloads compiled

kernels written in the OpenCL C language that execute on the target devices. It is a

widely accepted industry standard that is used in various fields such as scientific

computing, image and video processing, ML and AI, etc. OpenCL enables the execution

of programs on heterogeneous hardware environments through its runtime system and

execution model. It offers platform and device discovery to enable developers to

optimally configure the application execution flow. Additionally, it enables task and data

parallelism, memory management and data transfer, and dynamic load balancing and

resource utilization.

▪ TornadoVM: TornadoVM Framework facilitates the rapid development of edge

applications by abstracting hardware heterogeneity through a high-level programming

model [Fumero19]. It offers support for various hardware accelerators and simplifies

deployment across heterogeneous environments. It can reconfigure applications at run-

time for hardware acceleration by utilizing the available hardware resources. While

Tornado streamlines the development process, its higher level of abstraction may entail

trade-offs in terms of performance optimization and fine-grained control over hardware

resources. It is a unified framework written in Java and targeting parallel processing on

CPUs, GPUs, and FPGAs by following the rule, write once, run anywhere. It offers

seamless integration of existing software by introducing minimal changes to the source

code to adapt the application to TornadoVM API paradigms. Developers can utilize its

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

122

API to create tasks to be run on target hardware and design the code flow on a high

level. In the background DistributedMLOps analyses the code, data dependencies

between tasks, code regions that can be parallelized, translates high-level Java into low-

level OpenCL kernels, data offloading to and from the devices, and explores optimal

hardware configuration to optimize the set KPIs. Tornado VM is integrated within Java

VM and it utilizes the bytecode generator to perform JIT (just-in-time) compilation of

Java kernels into OpenCL ones with the target vice platform in mind.

5.4.2.4.1 Profiling and Analysing TornadoVM and OpenCL
Despite providing high-level abstraction for heterogeneous hardware programming,

TornadoVM quickly runs into limitations when we make direct comparison with OpenCL.

Figure 5-22 demonstrates runtime comparison between OpenCL and TornadoVM for vector

search with cosine similarity for vectors of size 2048 and varying number of vectors ranging

from 1000 to 500,000. It is worth noting that TornadoVM on average performed 10 times

slower than pure OpenCL implementation and ran into memory issues when the number of

vectors approached 100,000.

Figure 5-22. Vector search time comparison between Tornado and OpenCL

Despite TornadoVM shortcomings, the ideas presented clarify the approach in abstracting

away heterogeneous hardware programming. Currently, the TornadoVM does not adapt to

distributed systems, but it’s one of the future works mentioned in the paper as an integration

to multiple cloud-based VMs. There are other studies done in combining distributed

computation with GPU or FPGA processing, e.g. SnuRHAC [Jung2021] - a runtime for

heterogeneous clusters with CUDA devices. It provides an illusion of a single GPU for multiple

GPUs in a cluster by abstracting away the workload distribution and memory management. It

achieved up to 28 times speed-up over a single GPU while easing the programming of the

applications. Another example is EngineCL [Nozal20], which is a runtime system built on top of

OpenCL to automatically distribute workload across multiple computing devices with excellent

usability in mind. Although these tools simplify multiple device management, it is still expected

from a developer to write a codebase using low-level C/C++ with CUDA or OpenCL.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

123

Additionally, these tools are designed for use cases where hardware constraints are known,

and the program is optimized during compilation time based on the specific application. We

plan to extend either of these approaches to a distributed edge scenario with multiple

interconnected devices with dynamic reconfiguration and load balancing while providing a

high-level API for ease of application development.

Figure 5-23. Distributed Execution on Abstracted Hardwares

5.4.2.4.2 Design of Distributed Execution on Abstracted Hardware
Figure 5-23 ilustrates our design for a distributed execution mechanism can abstract the

underlying hardwares. Our design will contain several parts that will operate in a dynamic

cluster of nodes. The main node, called Host Runtime, is responsible for orchestrating the

workload among all available nodes and hardware on a high level. It comprises the following

modules: Code Compiler, Device Explorer, and Device Manager:

• The Device Explorer module acts as a liaison between the Host Runtime and external

Cluster Managers, such as Kubernetes, Apache Mesos, or Docker Swarm. It

communicates with the Cluster Manager to discover available clusters, hardware

devices, their configurations, and computational capabilities. This information is crucial

for efficient workload distribution and resource allocation.

• The Code Compiler module is responsible for compiling application code into

optimized kernels tailored for specific target devices within the heterogeneous

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

124

hardware environment. It ensures that the application is efficiently translated into

executable code, taking advantage of the unique architecture and capabilities of each

device.

• The Device Manager orchestrates the execution of the applications across

heterogeneous hardware devices on a global level. It comprises several key modules:

o The Task Flow Optimizer analyses the computational requirements of the

application and dynamically optimizes the task distribution across available

devices to maximize performance and minimize latency. It intelligently

partitions tasks, considering factors such as device capabilities, data

dependencies, and workload characteristics.

o The Memory Manager module is responsible for efficient memory utilization

across devices. It manages data movement, storage, and synchronization to

minimize overhead and ensure optimal performance. It employs strategies like

memory pooling, data compression, and memory sharing to mitigate memory

constraints and enhance scalability.

o The Device Profiler module gathers detailed performance metrics and profiling

data from each device in real-time. It monitors factors like compute utilization,

memory usage, power consumption, and network latency to provide insights

into device performance and identify optimization opportunities. This

information enables informed decision-making for task allocation and resource

management depending on set KPIs to optimize for.

o The Task Executor module is responsible for executing tasks on individual

devices according to the optimized task flow determined by the Task Flow

Optimizer. It manages task scheduling, parallel execution, and resource

allocation to ensure efficient utilization of device resources and timely

completion of tasks.

o The Load Balancer module dynamically distributes workload among available

devices to maintain balanced resource utilization and prevent bottlenecks. It

continuously monitors device performance and workload conditions;

reallocating tasks as needed to optimize throughput and minimize response

times. It employs algorithms like round-robin, weighted load balancing, or

predictive scheduling to achieve optimal workload distribution.

o The Fault Recovery module is responsible for handling device failures and

recovering from system disruptions to maintain application availability and

reliability. It implements fault tolerance mechanisms such as checkpointing,

task replication, and automatic failover to mitigate the impact of hardware

failures or network disruptions. It ensures seamless operation in the face of

unexpected events, preserving data integrity and minimizing downtime.

The device module, called Local Manager operates autonomously on each device, ensuring

that tasks are optimized and executed efficiently at the local level without manual intervention

or configuration by the developer. They collaborate to maximize the performance and

resource utilization of individual devices within the heterogeneous hardware environment,

contributing to the overall acceleration of the applications at the edge. They require minimum

setup and package as standalone containers. The Local Manager consists of the following local

level modules:

• The Task Flow Optimizer within the Local Manager is responsible for optimizing task

execution on the local device level. It analyses the computational requirements of the

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

125

tasks assigned to the device and dynamically optimizes their execution to maximize

performance and efficiency. This includes task partitioning, scheduling, and

prioritization based on local device capabilities and resource availability.

• The Memory Manager module within the Local Manager optimizes memory usage and

data handling on the local device. It manages memory allocation, data movement, and

caching to minimize latency and maximize memory bandwidth utilization. It employs

strategies like data locality optimization, memory pooling, and cache management to

enhance performance and reduce memory overhead.

• The Task Executor within the Local Manager is responsible for executing tasks assigned

to the local device. It manages task scheduling, parallel execution, and resource

allocation within the constraints of the local hardware environment. It ensures

efficient utilization of CPU, GPU, or FPGA resources, minimizing idle time and

maximizing throughput for optimal task execution.

• The Load Balancer module within the Local Manager optimizes workload distribution

and resource utilization on the local device. It monitors the computational load and

resource availability on the device, dynamically adjusting task allocation to maintain

balanced utilization and prevent resource contention. It employs load balancing

algorithms to evenly distribute tasks among CPU cores, GPU threads, or FPGA

resources, ensuring efficient utilization of hardware resources and optimal

performance.

5.4.3 SmartEdge Processing Primitives
The SmartEdge processing primitives refer to fundamental operations that can be run on edge

computing nodes that host SmartEdge Runtime. Such primitive operations provide the

mechanism for Orchestrator in Section 4 to push the processing closer to edge devices. The

include three types: graph stream query operators, tensor computations and sensor fusions.

5.4.3.1 Graph stream query operators
The graph stream query operators provide the core features for expressing data fusion

operations in T5.1 and WP3 given that SmartEdge extend RDF data models for capturing sensor

data interlinked with common sense and domain knowledge graphs.

• Basic graph matching: This operator is atomic operator in graph query language like

SPARQL, called basic graph pattern. It provides the basic building block for filtering and

graph pattern matching for more complicated query processing as well as some part of

Recipe defined in D3.1

• Multiway stream join: A multiway stream join operator is responsible for correlating

data from multiple streams based on certain join conditions. This is particularly useful

in UCs where information from different sensor sources needs to be combined to form

a unified view, such as combining radar data with output of object detections from

camera in UC2.

• Aggregation: Aggregation operators summarize data streams, providing statistics like

counts, averages, sums, and min/max values. This is essential for applications that

monitor trends over time, such as counting queuing vehicles in UC2.

• Similarity search: Similarity search operators find similar elements in data streams,

facilitating tasks such as object identifications. This operator uses metrics such as

Euclidean distance or cosine similarity to quantify likeness between output embeddings

of stream data elements, e.g detected objects in video frames.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

126

5.4.3.2 Tensor computations
Tensor computations are operations performed on tensors, which are multi-dimensional arrays

that generalize matrices to higher dimensions. They are fundamental to sensor fusion and DNN-

based models to be deployed in edge devices

• Matrix operations: These operations include matrix addition, multiplication, and

inversion, which are foundational for many machine learning algorithms. Efficient

matrix computation at the edge can significantly speed up model training and inference

processes.

• Vector ranking/Similarity: Vector ranking involves ordering vectors based on certain

criteria, often used in processing components that deal with multimodal data stream

such T5.1, e.g scene understanding and object tracking. Similarity computations

compare vectors to find how alike they are, which is crucial for tasks like clustering and

classification.

• Deep neural networks (DNNs): DNN computations involve forward and backward

passes through layers of neurons, enabling feature extraction and decision making. Edge

devices with the capability to perform these computations can execute complex models

such as object detection, segmentation and classification locally, thus supporting

applications like image recognition and natural language processing.

• Metric calculation for vectors: Metric calculations for vectors involve computing the

distance or similarity between vectors, which is essential for many machine learning

tasks, such as k-nearest neighbors (k-NN) algorithms.

5.4.4 SmartEdge plugins

5.4.4.1 P4 Runtime plugin
The Smart-node Network Control Plane Layer (SNCPL) is a software module that runs within both

the Access Point (AP) and the Swarm-node. In the context of an Access Point the SNCPL operates

in coordination with the Service Layer and a global node registry in order to ensure a swift and

seamless joining of required devices (actuators, sensors) to the swarm domain, based on

prerequisites declared by the swarm application running at the Application Layer. The SNCPL

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

127

uses socket communication over predefined Layer-Four port numbers for the purpose of

handling the join and leave requests from the Smart-nodes in the swarm domain.

The SNCPL also interacts through Inter-Process Communication with processes of both higher

and lower layers running within the same system to perform the verification of the Universal

Unique IDentifier of the newly introduced device (swarm node), as well as the validation that

the class of the device (that indicates the capabilities of the device) aligns with the application

requirements.

Furthermore, The SNCPL handles the injection of Match-Action table entries in the

programmable P4 switch running within the Access Point through an Apache Thrift Remote

Procedure Call (RPC) interface. Installing the correct table entries enables the P4 programmable

switch to properly route the data traffic among swarm nodes including unicast, multicast, and

broadcast traffic. Moreover, the P4 switch running in the Access Point assumes the role of

extracting any In-Band Telemetry metadata included within the data packets, before forwarding

the packet to its destination. As this type of telemetry data is meant for the monitoring system

that is overlooking the actual operational state of the swarm. The collected telemetry data

depends on the class of the device that has generated the telemetry metadata and can include

various vital parameters of the concerned device such as the loading of the CPU of the device,

the remaining charge within the battery, the location of the device, and so on. The collected

telemetry would then be transported to the Telemetry Collector which handles the processing

and classification of the collected data to deduce visionary insights about the state of the current

application and possibly provide recommendations for optimizing the effectiveness of current

Figure 5-24. Architecture modules of a swarm application with one Smart-node and one Coordinator

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

128

working applications. By implementing a mechanism for reading the feedback from the

telemetry system, developers of swarm applications can account for condition variabilities of

the expected behavior, as well as a better interaction between hardware and software

components involved in the current undergoing task.

While within the context of a Smart-node, the SNCPL communicates with its peer layer at the

swarm layer using TCP communication for transmitting control messages regarding the

membership of the swarm domain, so far three types of these messages have been tested in a

limited scenario. Namely, the Join message through which a Smart-node expresses its will to join

a swarm and take part in a specific application showing its capabilities. The second type of

message is a Switch message, which indicates that a Smart-node is willing to handover its

communication from one Access Point to another. The third type of message is the Leave

message, which expresses a Smart-node will end its role in the current application and leaves

the swarm.

All software components have been run and tested in a Linux environment running Ubuntu

20.04.

5.4.4.2 In-Network Machine Learning Attachment
WP4 uses automated frameworks to train, compile, map and deploy machine learning (ML)

models within the network. These are used mainly for security purposes but can also be used to

accelerate other types of network functions, particularly distributed ones.

The architecture of the distributed in-network computing framework is shown in Figure 5-25

below. The interface with WP5 is in the points marked (1) and (2) in the drawing. In (1),

information about the implemented function and used devices is passed to the framework. In

(2), information about the use-case network is being shared, i.e. the devices that are part of the

swarm and their connectivity. This can be combined with information from the P4 runtime

(5.4.4.4.1).

Figure 5-25. Architecture of Distributed In-Network Computing Framework

To support distributed in-network ML solutions, the mapping of a trained ML model is

automatically generated and is merged in (1). A training dataset and features used need to be

defined, as well as use case configurations. Note that existing P4 code, e.g., used for swarm

management, needs to be available in order to be merged. Runtime updates of the model, e.g.,

due to data skew, are possible using P4Runtime. To support hitless updates, all the features

need to be defined pre-deployment, as well as maximum table sizes.

The solution is aimed to support several types of P4 targets and has so far been tested on Linux

software switch (BMv2, Dell IoT Gateway) and Intel Tofino. More information is available in

[Zheng23].

5.4.4.3 Security Model of Swarm management
With the focus on building the security model of swarm management three use-cases have been

analysed (UC-2, UC-3, UC-5) and security requirements have been refined into a model.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

129

For the traffic management case, UC-2, the following threat model has been articulated:

1. No safety critical or real-time aspects. All tech deployed in SmartEdge is for optimisation

purposes.

2. DoS issues are unclear at this time

The most interesting research question is reputation-based trust and pseudonymization (IDM-

021):

a. Due to GPRS, any supplier of location information should be allowed to assume

a pseudonym, possibly multiple pseudonyms.

b. Pseudonymous suppliers of data should be able to improve their reputation

rating if their messages are confirmed by either post hoc observations or other

suppliers. Also, if they lie, their reputation must sustain a hit.

Security requirements differ between the project demo and the prospective full product

because the demo is much more tightly controlled by the project team than the product will

ever be, so it was decided that the components not required for the project will be plugged up.

For the health-care use case, UC-5a, the security model is somewhat different.

1. Due to the safety-critical situation in health care, any multivendor environment has to

include a provision for non-repudiation: medical data on which care decisions can be

based should be signed by the equipment that produces them in a manner that does

not require trust (SC-027).

2. Healthcare deals with masses of personal data, but secrecy is difficult to manage since

domain experts routinely cross administrative boundaries. For example, patients can be

referred to a consultant, who could be external to the assisted living support system and

could even be outside the local network. However, the case is well served by detaching

the data sets from the precise identity of the patient, i.e. by pseudonymisation (IDM-

021, IDM-018). Confidentiality requirements still exist to protect communication

between patient and edge server to prevent Advanced Persistent Threats (long-term

monitoring of customers with the purpose to construct a statistical profile for

commercial targeting).

We conclude that both safety-critical and non-safety critical cases require pseudonymity;

however, in one case we also require a reputation management system, whereas in the other

we only need to protect the user’s identity. Digital signature services are not essential to one

case, while being crucial to the other.

Another difference is the resource footprint. For smart sensors characteristic of medical

applications, the computational and communication resources are much more limited due to

the use of battery powered microcontrollers and a low-bandwidth, low-power communication

infrastructure. By comparison the automotive case is not significantly restricted. However, the

latency tolerance works in the opposite direction. In city traffic control, decisions should be

made in the time frame of a moving vehicle, whereas patient care, even when dealing with

emergencies is not on the single second scale, especially in the area of assisted living.

Speaking of the third use case, a smart factory, UC-3, we note that:

1. Like traffic control, real-time process operates in the closed loop, so there is no real-

time aspect to the system

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

130

2. Non-repudiation (SC-027) is high on the agenda for this use case as well. The reason is

similar to that for UC-5: the desire to be able to establish the root cause of failure based

exclusively on fact (and not on excessive trust). The difference is that a smart factory

robot is not constrained by power or bandwidth compared to the typical smart sensor

for UC-5.

3. No flexible identity management or pseudonymity is required. In a smart factory all

robots have a cryptographically protected digital ID and should use it in all cases.

4. Having said that, reputation-based trust is still desirable, since a factory can let an

external actor operate on its premises and in this case the amount of trust should be

established based on the track record. The difference from UC-2 is that actors are not

pseudonymous, but completely identified.

5. ROS, the operating system for robots has very poor namespace management facilities,

and so support for multiple security domains as regards confidentiality of data (IDM-

021) is required. Dell would prefer to have a decentralised solution (perhaps not

completely, but with a chain of trust rather than a single TTP).

In building the SMARTEDGE security infrastructure the following stages have been formulated:

1. Resource-limited digital signature scheme. We have developed a hash-based digital

signature scheme which can be implemented on a microcontroller equipped with a

hardware cryptographic accelerator, such as the one found in the Espressif ESP32. The

scheme is asymmetric, requiring little power on the part of the smart sensor and a small

transmit bandwidth, while the fog server executes more code and produces more data

— without needing to trust each other. We intend to bring this new security protocol to

bear on the swarm situation.

2. The same protocol can be adapted to reputation management. The difference is that a

single account will serve a whole swarm with provisions made to ensure progress even

when a counterparty stalls. This will require some new development, but it is justified

by the fact that the same basic primitives will serve both use cases.

3. As a risk mitigation stage, if the zero-trust solution of the previous bullet point proves

difficult within the constraints of a swarm, we will develop an approach based on a

Swarm Trusted Third Party (STTP). This will be in line with Dell’s approach to swarm

management based on leader election. It would be logical to endow the leader with

additional trust and manage the rest of the swarm that way. STTP would then be able

to award reputation points to a pseudonym, trade points between pseudonyms, and

maintain confidentiality of all transactions. The downside of the STTP solution is in its

single point of failure, which requires additional protection and additional resources on

the part of the elected leader, making the situation heterogeneous.

5.4.4.4 Mendix plugin
To make data generated by a SmartEdge swarm composable for Medix-based Swarm

Intelligence apps in WP3, SmartEdge runtime provides a data exchange mechanism with

Mendix, serving the data produced by SmartEdge runtime to Mendix. Via this, a Mendix

process/recipe can federate data querying workload via SPARQL Federation service to a

SmartEdge runtime.

On the other hand, to make data provided via OPC-UA in UC4 accessible for edge swarm nodes,

e.g robots running DDS and ROS2, the plugin also allows Mendix runtime to send the data to

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

131

SmartEdge runtime so that the data and devices behind that OPC-UA servers can be

transparently part of the SmartEdge Swarm.

At first, the interaction between Mendix and SmartEdge runtime will be implemented with the

focus on data elements related to UC3 and UC4 with the possibility to be extended for other

OPC-UA companion specifications. Such modules might follow the declarative transformation

approach of WP3 with some extensions of semantic DSL provided in Section 6.4.1. In particular,

the shared data elements among Robots, PackML and Machine Vision companions, IEEE AuR

ontology (see Section 3.3 of D3.1) and ROS 2 data structures will be aligned with this plugin.

5.4.4.5 Chunks & Rules

An open-source alternative to the Mendix runtime is the chunks and rules initiative, being
developed by W3C's Cognitive AI community group, see the Chunks and Rules specification
[Chunks and Rules].

The initiative builds upon decades of work in the Cognitive Sciences on cognitive architectures,
and more specifically, John Anderson's work on ACT-R at CMU [ACT-R]. Knowledge graphs can
be expressed as chunks using a lightweight notation. Each chunk is a collection of name/value
pairs where values are names, numbers or sequences thereof. Behaviour is expressed using
simple condition/action rules that operate on cognitive buffers holding single chunks and may
invoke asynchronous operations for complex processing and delegating behaviour to actuators.

Figure 5-26. Cognitive Architecture for chunks & rules

Chunks & rules mimics characteristics of human cognition and memory, including spreading
activation and the forgetting curve. There is a built-in set of operations along with the means for
applications to define their own operations as needed. The syntax is easy to learn:

https://act-r.psy.cmu.edu/

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

132

Figure 5-27. Chunks & Rules Syntax as Railroad Diagrams

An open-source JavaScript implementation is available that can be run on suitable edge devices
or in the cloud, e.g., as part of web pages or as part of NodeJS applications. Applications can
define custom actions, e.g., to control conveyor belts, robot arms and other machinery. Rule
execution runs independently and asynchronously from real-time control over actuators, see
the Robot demo using Chunks and Rules [Robot Chunks Demo].

The framework lends itself to distributed models of control where you have multiple
communicating agents that are executed on different processors, and threaded models of
behaviour, where the completion of one thread triggers the next thread. Agent to agent
communication is modelled in terms of perception and actuation, using application extensions.
Agents are identified by names, leaving messaging to lower layers that know what protocols and
standards are needed for each agent. In principle, this could be built upon W3C’s Thing
Descriptions which use RDF to model the affordances and protocol bindings.

At the time of writing this section, we are still at an early stage in understanding the role of low-
code for each of the use-cases, with the exception of use case 4, for which we have examples of
how recipes could apply.

Use case 3 describes the use of mobile robots for transferring work pieces between conveyor
belts and racks that move the work pieces from one manufacturing cell to another, see D2.2
Section 2.1.19.3. In principle, we could use chunks and rules to specify the behaviour of the
mobile robots in terms of event triggered tasks, where each task is modelled using a set of rules
that operate on the chunks defining the current state.

The rules control robot actuators via invoking ROS (Robot Operating System) controllers using
application defined extensions for @do actions in the chunks and rules language. Here is an
illustrative example for directing a robot arm to move to a given position, orientation and gripper
separation, and then grasp the workpiece, when the workpiece on conveyor belt named belt1
reaches the end of the belt and stops:

https://www.w3.org/Data/demos/chunks/robot/

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

133

move robot arm when belt1 is full
full {thing belt1} =>
 robot {@do move; x -120; y -75; angle -180; gap 40; step 1}

move robot arm into position to grasp work piece
after {step 1} =>
 robot {@do move; x -170; y -75; angle -180; gap 30; step 2}

move work piece to near the mobile rack
after {step 2} =>
 goal {@do clear},
 robot {@do grasp},
 robot {@do move; x -80; y -240; angle -90; gap 30; step 3}

The “step” argument used to trigger the behaviour to be executed when the operation has
completed. For this, the application code waits for ROS to signal that the operation has finished,
and then queues a chunk to the cognitive buffer to trigger a matching rule. Variables can be used
in place of explicit values. The variables are scoped to the rule and bound when matching the
rule’s conditions.
Perception is the process for interpreting sensory information and building live models of the
current state of the world as collections of chunks (aka knowledge graphs). Chunk rules can also
operate on these models using built-in CRUD based operations (create, read, update, delete) as
well as through application defined extensions for more complex operations that use a lower-
level chunk API. Events can be modelled as single chunks that trigger rules when injected into
chunk buffers. Chunks & Rules supports prioritised queues for chunk buffers as the basis for
handling urgent events.

Chunks can be viewed as a higher-level representation than RDF triples. Each chunk corresponds
to a set of triples with the same subject vertex in the triple graph. Further details can be found
at the W3C Cognitive AI Community Group.

5.4.5 Application-support Adaptors/Connectors

5.4.5.1 Metric Reporting & Visualization Tools
SmartEdge provides an integrated Metric Reporting and Visualization tool, offering a

streamlined approach for reporting and gathering metrics from various components within the

SmartEdge ecosystem. The aim of the component is to monitor the SmartEdge system status

and its configuration in order to detect possible misbehaviour or misconfigurations at an early

stage. The same can be used for SmartEdge applications. In addition, by using the Metrics

component and based on the data collected, SmartEdge and applications can be optimised.

Illustrated in Figure 4-28 is the Architecture of Metric Reporting and Visualization, comprising

the following key modules:

• Metrics Client: The Metrics Client is a library tailored to the technology stack of the

corresponding SmartEdge Component. It actively monitors and retrieves the required

metrics, transmitting them via HTTP REST API to the Metrics Reporting Server. These

metrics consist of data-time series, captured and reported periodically within a

configurable interval. Beyond the timestamp, additional contextual data such as device

identifier and location can accompany the metric type and value. In instances where

https://www.w3.org/community/cogai/

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

134

connectivity between the SmartEdge device and the Metrics Server is temporarily

unavailable, the SmartEdge component can cache the metrics data for a defined period.

Subsequently, it reports the cached metrics to the server once connectivity is

reestablished. The capacity for data caching should be adjustable. The client has the

capability to send the cached metrics in a bulk request (or multiple requests) to the

metrics server. Moreover, if a SmartEdge device within a swarm faces challenges in

establishing an HTTP connection to the metrics server, potentially due to limited

processing capabilities, another device within the swarm, such as the swarm

coordinator, can function as a Metrics client. It can then relay the metrics from devices

in the swarm to the metrics server.

• Metrics Server: The Metrics Server serves as a centralized component responsible for

collecting all metrics sent by SmartEdge devices through the REST API. It receives

requests via HTTP POST, with the metrics embedded in the HTTP body encoded in JSON

format. Subsequently, the Metrics Server stores this data as time-series in the database.

Additionally, it provides a secondary API that allows retrieval of the stored data. This

functionality proves valuable for tasks such as visualization in the dashboard or

conducting further analysis on the collected metrics.

• Metrics Dashboard: The Metrics Dashboard establishes a connection with the Metrics

Server to retrieve collected data, presenting them in an array of comprehensive widgets,

as illustrated in Figure 5-29. This dashboard incorporates a dynamic feature allowing

users to seamlessly add new widgets for visualizing specific metrics or a combination of

multiple metrics. Moreover, the dashboard provides extensive options for filtering

historical collected metrics, enhancing the flexibility and depth of analysis.

A n y S m a r t E d g e
C o m p o n e n t

M e t r i c s
C l i e n t

 SmartEdge M e t r i c s S e r v e r

(c l o u d h o s t e d)

M e t r i c s
D B

R E S T
P o s t M e t r i c s

A P I
C o n t r o l l e r

M e t r i c s D a s h b o a r d
(G r a f a n a)

R E S T
F e t c h M e t r i c s

Figure 5-28. Metric Reporting and Visualization

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

135

Figure 5-29. Metrics Dashboard

• Example Metric Types: While each use case may define a unique set of metrics, there

are metrics relevant across all use cases. Examples include CPU Usage, CPU Memory,

GPU Usage, GPU Memory, Latency (various types), Uplink Throughput, Downlink

Throughput, Packet Loss, and Jitter.

o Following some example Metrics of a selected use case to illustrate where

metrics can help to monitor and improve the system behavior (UC2 - Smart

Traffic Control):

• Node to node messaging latency: The communication method, namely

DDS, MQTT, or C-ITS V2X, could also affect latency. An example is the latency

of data sent from Sensor Nodes to Controller Nodes or vice-versa. UC2

nodes also include the original timestamp (message generation time) along

with the published JSON data, thus making it easy for the target node’s code

to calculate network latency. A tentative deadline of 100 to 200 milliseconds

is defined for UC2 node to node messages. As an example, the SmartEdge

Metric Client could show the percentage ratio of messages missing the

latency deadline.

• Task execution time (message processing time): This metric refers to the

computational load on nodes’ edge devices. A tentative deadline of 1 to 5

milliseconds is defined depending on each task of UC2. The SmartEdge

Metric Client could for example measure the ratio of tasks that miss their

deadline.

Example tasks to observe include:

o Traffic control decision making for the option zone: The time taken

by a Controller Node to process a combination of related incoming

sensing messages (from vehicles of a certain road-segment) before

making a traffic control decision for the option zone.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

136

o Queue length per lane calculation: The time taken by the indicator

node to compute queue length of vehicles in each lane of a road-

segment.

• Message processing drop rate (percentage of messages): Because sensor

messages in UC2 typically arrive at around 10 Hz rate, the target node edge

device (e.g. Controller) may have to drop some messages if it does not

manage to process all messages from all surrounding sensor nodes in good

time.

• Camera’s object detection rate (how many updates per second): Each

detection includes object’s classification together with its new location and

speed. Object detection updates should be at least 10 times per seconds to

enable safety applications such as the option zone control.

5.4.5.2 Remote Rendering and Streaming Pipeline (FhG?, ready for reviewing)
The Remote Rendering and Streaming pipeline by Fraunhofer FOKUS depicted in Figure 5-30

offers a powerful solution for rendering and streaming compute-intensive 3D applications and

Metaverse experiences on nearly any device. Even devices with limited graphical processing

capabilities, can access high-quality Metaverse experiences with ease. This is made possible by

offloading the compute-intensive 3D graphics processing to remote servers that run on-premise,

on the edge of a 5G network, or in the cloud. The rendered views are then streamed to end

devices for display.

In remote rendering, the view port of the virtual camera within the 3D experience is rendered

headlessly on the server and encoded as a video/audio stream, which is then delivered to the

user device via WebRTC, which only needs to play the stream. User interactions, which can vary

between different device classes, such as mouse/keyboard input on desktops, touch inputs on

mobile devices, remote control on TVs, and motion control on AR/VR displays, must be captured

and sent to the remote rendering server, which triggers the received events on the underlying

rendering engine as if they were received from a connected input device.

In SmartEdge, the Remote Rendering and Streaming will be used to run extensive simulations

and tests in photorealistic virtual environments supporting many of the SmartEdge use cases

especially use cases 1 and 2.

In addition, the Remote Rendering and Streaming pipeline integrates with the Metrics Reporting

and Visualization Tool introduced in the previous section. Performance metrics such as CPU and

GPU performance, memory usage, latency, and bitrates, among others, are reported and

visualized in the Metrics Dashboard.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

137

-

Figure 5-30. Remote Rendering and Streaming Architecture

5.4.5.3 Ego-vehicle centric Visualization (TUB)

Figure 5-31. Architecture of Multi-view Visualizer tool

The Multi-view Visualizer is a tool that supports visualizing and interacting with live data from

vehicles in a synchronized manner. The tool consists of two main components: Data Processing

and Visualizer as shown in Figure 5-31.

Web Browser GPU-accelerated Compute

General Purpose Compute & Storage

Signalling &

Coordination

Server

WebRTC

STUN/TURN

Server

Web Server

(App hosting)

Thin Web Client Unity Renderer
Unity Renderer

Unity RendererUnity Renderer
Thin Web Client

Thin Web Client
Thin Web Client

Docker

Unreal Renderer
Unreal Renderer

Unreal RendererUnreal Renderer

Metric Reporting

& Analytics

Server

Reporting

Client

Web Browser

Metric Evaluation

Dashboard

User

Admin

Reporting

Client

HTTP

WebSocket

WebRTC wo TURN

WebRTC w TURN

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

138

Data Processing: The Data Processing component is a customized iteration of the XVIZ Server,

originally developed by Uber. It functions as a backend infrastructure element responsible for

storing, processing, and serving data. The data from SmartEdge agents could stream to the Data

Processing through the publish-subscribe mechanism of ROS and be added to the Synchronizer

to synchronize data from multiple sources. Moreover, this component offers an interface

through which data can be accessed and retrieved for visualization purposes. By enabling

efficient data streaming and supporting real-time updates, the server enables clients, such as

web-based visualizers or other applications, to receive and process data in a synchronized

manner. This capability facilitates real-time monitoring and analysis of autonomous vehicle (AV)

sensor data, streamlining tasks like debugging, testing, and simulation of autonomous systems.

Figure 5-32. Multi-view Visualizer Screenshot

Visualizer: The Visualizer component is a web-based tool built upon an open-source framework

developed by Uber's Visualization team, known as Streetscape.gl. Leveraging the robust

capabilities of Streetscape.gl, the Visualizer inherits powerful features tailored for visualizing

and exploring geospatial data, particularly within urban environments and in the context of

autonomous vehicles (AVs). This component consumes data transmitted by the Data Processing

component to visualize and analyse information captured by AV sensors, including lidar,

cameras, and radar. By overlaying sensor data onto a 3D map, the Visualizer offers a

comprehensive view of the surrounding environment, enhancing the comprehension of complex

urban scenes. In the context of this project, the Visualizer component plays a crucial role in

visualizing autonomous data streamed from various sources simultaneously, thus facilitating a

visual assessment of data exchange capabilities among vehicles. A screenshot depicted in Figure

5-32 showcases the visualizer.

5.4.5.4 Swarm Visualization

One approach to visualizing swarms is to use web pages, exploiting HTML5’s CANVAS element
for 2D, 2.5D or potentially even 3D renderings. 2.5D isometric rendering is a good choice
offering fast rendering speeds and game like graphics. There are plenty of examples of
isometric images:

• https://www.bing.com/images/search?q=isometric+city+buildings

https://www.bing.com/images/search?q=isometric+city+buildings

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

139

• https://www.bing.com/images/search?q=isometric+factory+floor

The starting point is a set of 3D models that can be imaged from different directions to create
the image tiles used at run-time. The complete scene is composed from the components, e.g.
for a city scene, this involves the road, road junctions, traffic lights, cars, trucks, pavements,
buildings, street lights, trees, pedestrians, etc.

One tool chain for this is the Blender 3D editor plus a Python script to generate the image tiles
used at run-time. This can then be used to support panning, zooming and rotation (limited to
say 45-degree increments). Whilst ERCIM can help with the graphics resources, we would need
your input at least as a starting point.

If the swarm state is held on an edge server or cloud server, the state can be streamed in real-
time to the web page via WebSockets. The same socket connection can be also used to send
back messages as a means for users to interact with the swarm via affordances in the web page.
An example could be tapping on the visual representation of a vehicle to ask for information on
its current speed.

Figure 5-33. SimSwarm – screenshot of smart warehouse demo with robot forklifts, see:

https://www.w3.org/Data/demos/chunks/warehouse/

The rendering process involves an HTML5 call back with a high precision time stamp. This can
be driven by a message stream that specifies component position, scale, orientation, velocity
and potentially acceleration, enabling the renderer to compute the state for the given time
stamp. The scene components are rendered from back to front using a spatial sort that is
updated as the scene changes.

Special care is needed to properly render situations where one object is partially inside another.
One example is a forklift moving its forks into or out of a pallet. In my smart warehouse demo, I
split the 3D model of the pallet into top and bottom pieces so that the bottom is rendered before
the forks, followed by rendering the top of the pallet. I used off-screen compositing for rendering

https://www.bing.com/images/search?q=isometric+factory+floor

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

140

the forklift and its payload when moving into or out of a docking bay. Similar approaches would
be used for rendering a car driving under a bridge.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

141

6 CONCLUSIONS

This deliverable D5.1 shows the first step towards achieving Objective 5 of the SmartEdge

project, namely, building Low-code Programming Tools for Edge Intelligence providing (i)

semantic driven multimodal stream fusion for Edge devices; (Section 2) (ii) swarm elasticity via

Edge-Cloud Interplay (Section 3) (iii) adaptive coordination and optimization; (iv) cross-layer

toolchain for Device-Edge-Cloud Continuum. Each section presents different technologies and

components, but they share the declarative programming and data models as the integration

points for the overall design of the overall toolchain.

D5.1 reports the design outcome together with preliminary studies on how to build consistent

components of the set of low-code programming. The design not only takes five KPIs as the

guiding criteria but analyses several baselines of the current state of practice (Section 1.2).

Moreover, along with the design realization, some initial studies and implementations were

carried with some positive outcomes towards some subsets of UCs. This sets first steps towards

the implementation of the first version of SmartEdge tool chain for the first milestone as well as

the second deliverable of WP 5, namely D5.2. Aligning with the starting of WP6, D5.1 provides

the design reference for integrating WP5 with other WPs in realization and validation of five

targeted UCs.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

142

REFERENCES

[Aberer01] K. Aberer, "P-Grid: A self-organizing access structure for P2P information systems",
in Cooperative Information Systems: 9th International Conference, CoopIS 2001 Trento, Italy,
September 5–7, 2001 Proceedings, vol. 9, Springer Berlin Heidelberg, pp. 179-194.

[ACT-R] “ACT-R Research Group, CMU”, last modified 2023, URL: http://act-r.psy.cmu.edu/

[Anh18] A. Le-Tuan, C. Hayes, M. Wylot, and D. Le-Phuoc. Rdf4led: An rdf engine for lightweight

edge devices. In IOT ’18, 2018.

[Anh19] A. Le-Tuan, D. Hingu, M. Hauswirth, and D. Le-Phuoc. Incorporating blockchain into rdf

store at the lightweight edge devices. In Semantic ’19, 2019

[Anh21] Le Tuan, Anh, et al. "VisionKG: Towards A Unified Vision Knowledge Graph." ISWC

(Posters/Demos/Industry). 2021.

[Auer17] Auer, Sören, et al. "Dbpedia: A nucleus for a web of open data." international semantic

web conference. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.

[Balazinska04] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-based load

management in federated distributed systems. In NSDI’04, 2004

[Biffi20] Biffi, Leonardo Josoé, et al. "ATSS deep learning-based approach to detect apple fruits."

Remote Sensing 13.1 (2020): 54.

[Bowden22] Bowden, David, and Diarmuid Grimes. "Intelligent Image Compression Using Traffic

Scene Analysis." Irish Conference on Artificial Intelligence and Cognitive Science. Cham: Springer

Nature Switzerland, 2022.

[Carion20] Carion, Nicolas, et al. "End-to-end object detection with transformers." European

conference on computer vision. Cham: Springer International Publishing, 2020.

[Chen21] Chen, Qiang, et al. "You only look one-level feature." Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition. 2021.

[Chen23] Chen, Qiang, et al. "Group detr: Fast detr training with group-wise one-to-many

assignment." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.

[Chen19] Chen, Tianshui, et al. "Knowledge-embedded routing network for scene graph

generation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 2019.

[Chunks and Rules] “Chunks and Rules Specification”, W3C Cognitive AI Community Group, last

modified 04 January 2024, URL: https://w3c.github.io/cogai/chunks-and-rules.html

[Cong23] Cong, Yuren, Michael Ying Yang, and Bodo Rosenhahn. "Reltr: Relation transformer for

scene graph generation." IEEE Transactions on Pattern Analysis and Machine Intelligence (2023).

[Cudre-Mauroux13] Philippe Cudré-Mauroux, Iliya Enchev, Sever Fundatureanu, Paul Groth,

Albert Haque, Andreas Harth, Felix Leif Keppmann, Daniel P. Miranker, Juan F. Sequeda, Marcin

Wylot: NoSQL Databases for RDF: An Empirical Evaluation. ISWC (2) 2013: 310-325.

[Cui22] Cui, Yu, and Moshiur Farazi. "VReBERT: a simple and flexible transformer for visual

relationship detection." 2022 26th International Conference on Pattern Recognition (ICPR). IEEE,

2022.

http://act-r.psy.cmu.edu/
https://w3c.github.io/cogai/chunks-and-rules.html

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

143

[Dai16] Dai, Jifeng, et al. "R-fcn: Object detection via region-based fully convolutional networks."

Advances in neural information processing systems 29 (2016).

[Danh11] D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and adaptive

approach for unified processing of linked streams and linked data. In ISWC’11, pages 370–388,

2011.

[Danh15] D. Le-Phuoc, M. Dao-Tran, C. Le Van, A. Le Tuan, T. T. N. Manh Nguyen Duc, and M.

Hauswirth. Platform-agnostic execution framework towards rdf stream processing. In RDF

Stream Processing Workshop at ESWC2015, 2015.

[Danh17]D. Le-Phuoc. Operator-aware approach for boosting performance in RDF stream

processing. J. Web Sem., 42:38–54, 2017.

[Danh18] D. Le-Phuoc. Adaptive optimisation for continuous multi-way joins over rdf streams.

In Companion Proceedings of the The Web Conference 2018, WWW ’18, pages 1857–1865,

2018.

[Danh21] Le-Phuoc, Danh, Thomas Eiter, and Anh Le-Tuan. "A scalable reasoning and learning

approach for neural-symbolic stream fusion." Proceedings of the AAAI Conference on Artificial

Intelligence. Vol. 35. No. 6. 2021.

[Dell17]D. Dell’Aglio, D. L. Phuoc, A. Le-Tuan, M. I. Ali, and J.-P. Calbimonte. On a web of data

streams. In DeSemWeb@ISWC, 2017.

[Denny14] Vrandečić, Denny, and Markus Krötzsch. "Wikidata: a free collaborative

knowledgebase." Communications of the ACM 57.10 (2014): 78-85.

[Dias2019] Vinicius Dias, Carlos HC Teixeira, Dorgival Guedes, Wagner Meira, and Srinivasan

Parthasarathy. 2019. Fractal: A general-purpose graph pattern mining system. In Proceedings of

the 2019 International Conference on Management of Data. 1357–1374.

[Dominik23] Kreuzberger, Dominik, Niklas Kühl, and Sebastian Hirschl. "Machine learning

operations (mlops): Overview, definition, and architecture." IEEE Access (2023).

[Duc21] Manh Nguyen Duc, Anh Lê Tuán, Manfred Hauswirth, Danh Le Phuoc: Towards

autonomous semantic stream fusion for distributed video streams. DEBS 2021: 172-175.

[Fumero19] Juan Fumero, et al. “Dynamic application reconfiguration on heterogeneous

hardware”. VEE 2019: Proceedings of the 15th ACM SIGPLAN/SIGOPS International Conference

on Virtual Execution (2019): 165–178

[Girshick15] Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE international conference on

computer vision. 2015.

[Grubenmann18] T. Grubenmann, A. Bernstein, D. Moor, and S. Seuken. Financing the web of

data with delayed-answer auctions. In WWW ’18, 2018

[Haller19] A. Haller, K. Janowicz, S. J. D. Cox, M. Lefran ̧cois, K. Taylor, D. Le-Phuoc, J. Lieberman,

R. Garc ́ıa-Castro, R. Atkinson, and C. Stadler. The modular SSN ontology: A joint W3C and OGC

standard specifying the semantics of sensors, observations, sampling, and actuation. Semantic

Web, 10(1):9–32, 2019.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

144

[Hong21] Hong, Jinyung, and Theodore P. Pavlic. "Representing Prior Knowledge Using

Randomly, Weighted Feature Networks for Visual Relationship Detection." arXiv preprint

arXiv:2111.10686 (2021).

[Hornung13] A. Hornung, K.M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, "OctoMap:

An Efficient Probabilistic 3D Mapping Framework Based on Octrees" in Autonomous Robots,

2013; DOI: 10.1007/s10514-012-9321-0.

[Hussein23] Rana Hussein, Alberto Lerner, André Ryser, Lucas David Bürgi, Albert Blarer, Philippe

Cudré-Mauroux: GraphINC: Graph Pattern Mining at Network Speed. Proc. ACM Manag. Data

1(2): 184:1-184:28 (2023).

[ISD24] [dataset] https://www.ncdc.noaa.gov/isd

[Jia23] Jia, Ding, et al. "Detrs with hybrid matching." Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 2023.

[Jiang23] Jiang, Bowen, and Camillo Taylor. "Hierarchical Relationships: A New Perspective to

Enhance Scene Graph Generation." NeurIPS 2023 Workshop: New Frontiers in Graph Learning.

2023.

[Jicheng23] Yuan, Jicheng, et al. "VisionKG: Unleashing the Power of Visual Datasets via

Knowledge Graph." arXiv preprint arXiv:2309.13610 (2023).

[Jung21] Jaehoon Jung, et al. “SnuRHAC:ARuntimeforHeterogeneousAcceleratorClusters

withCUDAUnifiedMemory”. HPDC '21: Proceedings of the 30th International Symposium on

High-Performance Parallel and Distributed Computing (2021): Pages 107–120

[Kien21] Kien-Tran, Trung, et al. "Fantastic Data and How to Query Them." NeurIPS (Workshop

on Data-Centric AI}, 2021.

[Kirillov23] Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., … Girshick, R.

(2023). Segment Anything. arXiv:2304. 02643.

[Kundu23] Kundu, Sanjoy, and Sathyanarayanan N. Aakur. "IS-GGT: Iterative Scene Graph

Generation With Generative Transformers." Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 2023.

[Kurt08] Bollacker, Kurt, et al. "Freebase: a collaboratively created graph database for

structuring human knowledge." Proceedings of the 2008 ACM SIGMOD international conference

on Management of data. 2008.

[Lee24] Sangjin Lee, Alberto Lerner, Philippe Bonnet, Philippe Cudré-Mauroux: Database

Kernels: Seamless Integration of Database Systems and Fast Storage via CXL. CIDR 2024.

[Lin17] Lin, Tsung-Yi, et al. "Focal loss for dense object detection." Proceedings of the IEEE

international conference on computer vision. 2017.

[Liu22] Liu, Shilong, et al. "Dab-detr: Dynamic anchor boxes are better queries for detr." arXiv

preprint arXiv:2201.12329 (2022).

[Liu23] Liu, Shilong, et al. "Grounding dino: Marrying dino with grounded pre-training for open-

set object detection." arXiv preprint arXiv:2303.05499 (2023).

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

145

[Manh19] Nguyen-Duc, M., Le-Tuan, A., Calbimonte, J.P., Hauswirth, M., Le-Phuoc, D.:

Autonomous rdf stream processing for iot edge devices. In: JIST 2019, pp. 304–319. Springer,

Cham (2019)

[Manh22] Nguyen-Duc, Manh, et al. "SemRob: Towards Semantic Stream Reasoning for Robotic

Operating Systems." arXiv preprint arXiv:2201.11625 (2022).

[Mar23] Hirzel, Martin. Low-Code Programming Models. Commun. ACM 66(10): 76-85 (2023)

[Munshi09] A. Munshi, The OpenCL specification, 1, IEEE, Stanford, CA, USA, 2009.

[Nozal20] Raul Nozal, et al. “EngineCL: Usability and Performance in Heterogeneous

Computing”. Future Generation Computer Systems 107 (2020): Pages 522-537

[Naphade19] Naphade, Milind, Zheng Tang, Ming-Ching Chang, David C. Anastasiu, Anuj Sharma,

Rama Chellappa, Shuo Wang et al. "The 2019 AI City Challenge." In CVPR workshops, vol. 8, p. 2.

2019.

[Onos24] https://opennetworking.org/onos/

[Pang19] Pang, Jiangmiao, et al. "Libra r-cnn: Towards balanced learning for object detection."

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

[Ranftl20] Ranftl, René, et al. "Towards robust monocular depth estimation: Mixing datasets for

zero-shot cross-dataset transfer." IEEE transactions on pattern analysis and machine intelligence

44.3 (2020): 1623-1637.

[Redmon15] Redmon, J., Divvala, S. K., Girshick, R. B., & Farhadi, A. (2015). You Only Look Once:

Unified, Real-Time Object Detection. CoRR, abs/1506.02640. Retrieved from

http://arxiv.org/abs/1506.02640

[Ren15] Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region

proposal networks." Advances in neural information processing systems 28 (2015).

[Ren24] Ren, T., Liu, S., Zeng, A., Lin, J., Li, K., Cao, H., … Zhang, L. (2024). Grounded SAM:

Assembling Open-World Models for Diverse Visual Tasks. arXiv [Cs.CV]. Retrieved from

http://arxiv.org/abs/2401.14159

[Rezatofighi19] Rezatofighi, Hamid, et al. "Generalized intersection over union: A metric and a

loss for bounding box regression." Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition. 2019.

[Robot Chunks Demo] “Robot demo using Chunks & Rules”, last modified 02 Jul 2020, W3C

Cognitive AI Community Group, URL: https://www.w3.org/Data/demos/chunks/robot/

[Ryser22] André Ryser, Alberto Lerner, Alex Forencich, Philippe Cudré-Mauroux: D-RDMA:

Bringing Zero-Copy RDMA to Database Systems. CIDR 2022.

[Schneider22] Patrik Schneider, Daniel Alvarez-Coello, Anh Le-Tuan, Manh Nguyen Duc, Danh Le

Phuoc: Stream Reasoning Playground. ESWC 2022: 406-424.

[Shaoqing15] Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region

proposal networks." Advances in neural information processing systems 28 (2015).

https://www.w3.org/Data/demos/chunks/robot/

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

146

[Speer17] Speer, Robyn, Joshua Chin, and Catherine Havasi. "Conceptnet 5.5: An open

multilingual graph of general knowledge." Proceedings of the AAAI conference on artificial

intelligence. Vol. 31. No. 1. 2017.

[Tang19] Tang, Kaihua, et al. "Learning to compose dynamic tree structures for visual contexts."

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

[Tian19] Tian, Zhi, et al. "Fcos: Fully convolutional one-stage object detection." Proceedings of

the IEEE/CVF international conference on computer vision. 2019.

[Tommasini19] R. Tommasini, D. Calvaresi, and J.-P. Calbimonte. Stream reasoning agents:

Bluesky ideas track. In AAMAS, pages 1664–1680, 2019

[VanAssche21] Van Assche, Dylan, et al. “Leveraging Web of Things W3C recommendations for

knowledge graphs generation”, Proceedings of the 21st International Conference on Web

Engineering, 2021.

[Vrandečić14] Vrandečić, Denny, and Markus Krötzsch. "Wikidata: a free collaborative

knowledgebase." Communications of the ACM 57.10 (2014): 78-85.

[W3C24] “Web of Things” [Online], https://www.w3.org/WoT/documentation/, Retrieved
02/2024

[Xu17] Xu, Danfei, et al. "Scene graph generation by iterative message passing." Proceedings of

the IEEE conference on computer vision and pattern recognition. 2017.

[Zellers18] Zellers, Rowan, et al. "Neural motifs: Scene graph parsing with global context."

Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

[Zhang22] Zhang, Hao, et al. "Dino: Detr with improved denoising anchor boxes for end-to-end

object detection." arXiv preprint arXiv:2203.03605 (2022).

[ZhangJi18] Zhang, Ji, et al. "An interpretable model for scene graph generation." arXiv preprint

arXiv:1811.09543 (2018).

[Zheng23] Zheng, Changgang et al. "DINC: toward distributed in-network computing", ACM

CoNEXT and Proceedings of the ACM on Networking (PACMNET), December 2023.

[Zong23] Zong, Zhuofan, Guanglu Song, and Yu Liu. "Detrs with collaborative hybrid assignments

training." Proceedings of the IEEE/CVF international conference on computer vision. 2023.

D5.1 Design of Low-code Programming Tools for Edge Intelligence SmartEdge GA 101092908

147

[Lin14] Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L.

(2014). Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th

European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13 (pp.

740-755). Springer International Publishing.
[Chen21] Chen, Q., Wang, W., Huang, K., De, S., Coenen, F.: Multi-modal generative adversarial

networks for traffic event detection in smart cities. Expert Systems with Applications 177,

114,939 (2021).

[Gao20] Gao, J., Li, P., Chen, Z., Zhang, J.: A survey on deep learning for multimodal data
fusion. Neural Computation 32(5), 829–864 (2020)

[Khadanga19] Khadanga, S., Aggarwal, K., Joty, S., Srivastava, J.: Using clinical notes with time
series data for icu man- agement. In: Proceedings of the 2019 Conference on Em- pirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 6432–6437 (2019)

[Yang 21]Yang, H., Kuang, L., Xia, F.: Multimodal temporal- clinical note network for mortality
prediction. Journal of Biomedical Semantics 12(1), 1–14 (2021)

	1 Introduction
	1.1 Low-code For Edge Intelligence
	1.2 Review of KPIs and Baselines

	2 Semantic-driven Multimodal Stream Fusion For Edge Devices
	2.1 Overview of Stream Fusion
	2.2 Requirements and KPIs
	2.3 Preliminaries and State of the Art
	2.4 Architecture and Design
	2.4.1 Design Overview
	2.4.2 Object Detection, Integration of Sensors, and Scene Understanding
	2.4.2.1 Scene Understanding in Traffic
	2.4.2.1.1 Introduction
	2.4.2.1.2 Related work and state-of-the-art
	2.4.2.1.3 Proposed solutions

	2.4.2.2 Scene Understanding in Smart Factory
	2.4.2.3 Integrate Multi-modal Sensor Data Sources
	2.4.2.4 Media Stream Processing

	2.4.3 Semantic Data Stream Fusion
	2.4.3.1 Adopting FAIR principles
	2.4.3.2 Semantic Data Streams and Declarative Mapping Rules

	3 Swarm elasticity via edge-cloud interplay
	3.1 Overview of edge-cloud interplay
	3.2 Requirements and KPIs
	3.2.1 Requirements
	3.2.2 KPIs

	3.3 Preliminaries and state of the art
	3.3.1 An introduction to modern data exchange and its challenges
	3.3.1.1 An Introduction to RDMA
	3.3.1.2 An Introduction to Programmable Network Devices

	3.3.2 Declarative Data Exchange
	3.3.3 Heterogeneous, Low-Code Computing

	3.4 Architecture and design
	3.4.1 General architecture
	3.4.2 Integration with SmartEdge generic architecture
	3.4.3 Integration with Use-Cases
	3.4.3.1 Integration with UC2
	3.4.3.2 Integration with UC3

	3.4.4 D-RDMA extensions
	3.4.5 CXL Extensions
	3.4.6 Offloading computations
	3.4.6.1 Offloading Face Blurring on a DPU
	3.4.6.2 Offloading Data-Intensive Operators to Accelerators using P4
	3.4.6.3 Offloading Graph-Based Operations

	3.4.7 Offloading Complex SmartEdge Operations Using SPARQL
	3.4.8 Runtime Optimizer

	4 Adaptive coordination and optimization Mechanisms
	4.1 Overview of Swarm Coordination and Optimization
	4.2 Requirements
	4.3 Preliminaries And State of The Art
	4.3.1 Data Distribution Service -based Communication
	4.3.1.1 Eclipse Cyclone DDS
	4.3.1.2 eProsima DDS
	4.3.1.3 RTI Connext DDS

	4.3.2 P2P-based Discovery and Federation
	4.3.2.1 System Architecture and Implementation
	4.3.2.2 Preliminary Experimental Findings

	4.4 Component Design
	4.5 Semantic-Based Discovery and Formation of Swarm
	4.5.1 RDFizing P4-based network information into Dynamic Knowledge Graph
	4.5.2 Network-aware Swarm Formation with DDS
	4.5.2.1 ROS data types and data collections
	4.5.2.2 Swarm coordination mechanisms.
	4.5.2.3 Communication at application level – ROS message
	4.5.2.4 Semantic ROS for SmartEdge runtime

	4.6 Orchestration via Continuous Query Federation
	4.6.1 Preliminary Experiment and Results
	4.6.2 From empirical insights to design and implementation of Orchestrator and Optimizer

	5 Cross Layer toolchain for device-edge-cloud Continuum
	5.1 Overview of cross-layer tool chain for Device-Edge-Cloud CONTINUUM
	5.2 Requirements
	5.3 Preliminaries And Stage of The Art
	5.3.1 Object Detections for Edge Devices
	5.3.2 Preliminary results for Semantic Programming for edge computing

	5.4 Model and design
	5.4.1 Semantic Programming Model for Low-code Programming
	5.4.1.1 Semantic Program
	5.4.1.2 Semantic Data Model
	5.4.1.2.1 Semantic data model for Traffic (UC1 and UC2)
	5.4.1.2.2 Semantic SLAM (UC 3 and UC4)
	5.4.1.2.2.1 RDFize ROS-based SLAM data structures into Semantic Streams
	5.4.1.2.2.2 Link Semantic Types of Spatial Objects
	5.4.1.2.2.3 Continuous Queries over Semantic SLAM

	5.4.2 Integrate/deploy/build toolchain into execution target/environments.
	5.4.2.1 Ontology-driven Design for Cross-Layer Toolchain
	5.4.2.2 SmartEdge Runtime
	5.4.2.3 Interactive Active Model training and selection workflow
	5.4.2.4 Abstracting hardware and execution framework for MLOps
	5.4.2.4.1 Profiling and Analysing TornadoVM and OpenCL
	5.4.2.4.2 Design of Distributed Execution on Abstracted Hardware

	5.4.3 SmartEdge Processing Primitives
	5.4.3.1 Graph stream query operators
	5.4.3.2 Tensor computations

	5.4.4 SmartEdge plugins
	5.4.4.1 P4 Runtime plugin
	5.4.4.2 In-Network Machine Learning Attachment
	5.4.4.3 Security Model of Swarm management
	5.4.4.4 Mendix plugin
	5.4.4.5 Chunks & Rules

	5.4.5 Application-support Adaptors/Connectors
	5.4.5.1 Metric Reporting & Visualization Tools
	5.4.5.2 Remote Rendering and Streaming Pipeline (FhG?, ready for reviewing)
	5.4.5.3 Ego-vehicle centric Visualization (TUB)
	5.4.5.4 Swarm Visualization

	6 Conclusions

